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ARTICLE INFO ABSTRACT

Keywords: In this study, an analytical solution has been developed for the elastic buckling analysis of stiffened panels sub-
Buckling analysis jected to pure bending, and the effect of main geometric parameters of the stiffened panels on buckling strength
Sﬁffen_ed panel ) has been investigated. A simplified model of stiffened panels has been proposed for buckling analysis, where an
g::(li}i’:;al solution elastically built-in boundary condition replaces the skin’s effect on buckling of the stiffened panels. The equilib-

rium method with a conventional rigid skin assumption and a new flexible skin assumption is developed for the
simplified model to analytically capture the buckling behaviour of the stiffened panels. To consider the non-rigid
rotation effect of flexible skin on buckling of stiffened panels, a new parameter, the effective width of stiffened
panels, has been introduced, and a finite element (FE) assisted method has been employed to obtain its value
for different stiffened panels. The results show that the flexible skin assumption significantly enhances the accu-
racy of buckling strength prediction compared with the conventional rigid skin assumption, and the maximum
difference between analytical results and corresponding FE simulations is decreased from 12.2% with rigid skin
assumption to only 3.9%. Based on the proposed analytical solution, effects of main geometric parameters of the
stiffened panels (the stiffened panel length and width, the stiffener height, and the ratio of the skin thickness
to the stiffener thickness) on their buckling coefficients have been discussed. Increasing stiffened panel length
and/or reciprocal of stiffener height leads to an initial abrupt decrease of the buckling coefficient until reaching
a stable level. When the stiffened panel width increases, the buckling coefficient first increases and then remains

Effective width

stable, whereas increasing thickness ratio leads to the increase of the buckling coefficient.

1. Introduction

Stiffened panels are widely used in marine and aerospace applica-
tions due to their lightweight and high bending stiffness characteristics
[1]. Different methods have been employed to produce stiffened pan-
els [2]. The conventional built-up stiffened panels are manufactured
by connecting the formed skins and stiffeners through welding [3] or
riveting technologies [4]. The integrally stiffened panels, which are ma-
chined or extruded from a single thick plate [1], become more and more
popular, due to their advantages of higher crack growth life and lower
manufacturing cost compared with built-up stiffened panels [5]. Some
forming technologies, such as press bend forming [6,7] and creep age
forming [5,8], have been reported to be suitable methods for forming
integrally stiffened panels into desired shapes. More recently, Hua and
co-workers developed a new Space Envelope Forming (SEF) method,
in which the envelope of motion paths of a rocking tool on workpiece
forms the profile of components, for manufacturing integral thin-walled
high web rib panels [9]. They have also developed theories for calcu-
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lating the rocking die motion track to design non-rotary rocking tool
and for interference judgement between the rocking tool and compo-
nents, and have applied non-rotary rocking tools to produce thin-walled
gear (under circular motion) [10,11] and thin-walled gear rack (under
straight motion) [12]. These pioneer experimental [10] and theoretical
[11] achievements have opened a new scope for the manufacturing of
lightweight panels with integrated stiffeners.

Flat stiffened panels are often formed to desired shapes for partic-
ular applications by different forming technologies such as creep age
forming, during which bending is one of the most common loading
conditions. Buckling may occur in the stiffener area of the stiffened
panels during bending due to the high concentrated stresses at the top
of the stiffeners, which could lead to failure of stiffened panels in the
forming process [13]. On the other hand, stiffener design can be opti-
mised to avoid possible buckling problem. Hence, in order to achieve
the successful forming and guide the design of stiffened panels, it is
necessary to understand their buckling behaviour subjected to bending
conditions.
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Nomenclature

Length of stiffened panel (mm)

Area (mm?)

Coefficient of linear homogeneous equations (-)
Width of stiffened panel (mm)

Effective width of stiffened panel (mm)

n Coefficient of deflection function of stiffened panel (-)
Non-dimensional rotational constraint coefficient of
skin (=)

Flexural stiffness of stiffener (GPa mm3)
Young’s modulus (GPa)
fmn Deflection function of stiffened panel in the y-direction
with respect to numbers of half-waves (-)
f,:, ,(,,4) The second and fourth derivatives of f,,, ()
G Shear modulus (GPa)
h Height of stiffener (mm)

qacrc*é>:>s=

SRS

)

Jg J!,  Polar moment of inertia of rigid skin and flexible skin
respectively (mm*)
k, k.. Non-dimensional buckling coefficient and its critical

value (-)
[k1, [k]l; Stiffness matrices and geometric stiffness matrices re-
spectively (-)

m Number of half-waves in the x-direction in a buckling
mode (-)

M, Moment per unit length applied on connecting edge
of stiffener by skin which acts as a bending moment
((N m)/m)

M! Moment per unit length applied on connecting edge
of skin by stiffener which acts as a torsional moment
((N ' m)/m)

M ; o Moment per unit length at joint of connecting edge and
symmetric line (N m)/m)

M, Critical buckling moment (N m)

My, Moment per unit length on upper edge of stiffened panel
((N ' m)/m)

M, Moment applied on stiffened panel in the z-direction
(Nm)

n Non-negative integer (-)

oo ot Thickness of skin and stiffener respectively (mm)

Vip Vertical shearing force per unit length along upper edge
of stiffened panel (N/m)

w Deflection of stiffener in the z-direction (mm)

XY, 2 Coordinates (-)

Ax Spatial increment of neighbouring nodes (mm)

Yo Distance between neutral axis of stiffened panel and top
of stiffened panel (mm)

a Loading coefficient (-)

{6} Buckling eigenvector (-)

& n Non-dimensional coordinates in x and y-directions, de-
fined as x/a and y/b respectively (-)

0, 6" Rotation angle of skin and stiffener respectively (rad)

05 0, Rotation angle of flexible skin and rigid skin respec-
tively (rad)

A Buckling load eigenvalue (-)

" Deflection of skin in the y-direction (mm)

v Poisson’s ratio (-)

oy In-plane stress in the x-direction (MPa)

Cer Critical buckling strength (MPa)

0o In-plane stress in the x-direction at top of stiffener

(MPa)

Finite element (FE) method has been used to calculate critical buck-
ling strengths of stiffened panels under different loading conditions,
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such as compression and bending, whose effectiveness has been vali-
dated by some buckling tests [14,15]. However, a long simulation time
is needed to obtain accurate results. The total simulation time could
be significantly long in the design of stiffened panels, as an iterative
optimisation is generally needed and the critical buckling strength has
to be calculated at each iteration [16]. Hence, analytical solutions for
buckling analysis of stiffened panels, which can achieve comparatively
accurate results in an extremely short time, is very much in need [17].

Currently, two main analytical methods are generally used to solve
the buckling behaviour of structures: the equilibrium method and the
energy method (Ritz method). In the equilibrium method, the equilib-
rium differential equation of buckling is directly solved based on the
loading and deflection functions of the structures with corresponding
boundary constraint equations [18,19]. The equilibrium method can
obtain exact results of critical buckling strength with high efficiency
and has been widely employed for buckling strength calculations of
thin plates with different loading and boundary conditions, such as sim-
ply supported thin plates under uniform compression [20,21] or under
linearly distributed stress [22,23]. The method has also been success-
fully applied to the buckling analysis of stiffened panels under loading
conditions where buckling mainly occurs on the skin, such as compres-
sion [24] and eccentric compression along skin [25]. In these cases, the
equilibrium equations in the skin of the stiffened panels were used for
the buckling calculations and the effect from the stiffener on buckling
was considered by adding a special constraint, elastically built-in (an in-
termediate boundary condition between simply supported and built-in
condition), on the joint edge between the skin and stiffener [26]. For ex-
ample, Paik and Thayambali [27] analysed the skin buckling behaviour
of stiffened panels with multi-stiffener, where the section of the skin be-
tween two stiffeners was modelled as a thin plate with two elastically
built-in boundaries. Under many other loading conditions, such as bend-
ing, buckling of stiffened panels also occurs in the stiffener. However,
no report has been found to solve the buckling problem in the stiffener
of the stiffened panels using the equilibrium method.

The energy method, on the other hand, solves the buckling prob-
lems in terms of the total potential energy which is the sum of the strain
energy stored in the structure (depending on the deflection of struc-
ture) and the work done of the applied load (relating to critical buckling
strength). The buckling stress is obtained by minimising the total poten-
tial energy [28]. The method is much easier to be applied to buckling
calculations for structures with complicated geometric conditions, such
as stiffened panels, however, the deflection of the buckled structures
has to be assumed before the calculations, which raises some uncertain-
ties of the method [29]. Energy method has been applied to calculate the
buckling strength of stiffened panels in many studies [30], however, dif-
ferent flexible skin deflection assumptions have been used to consider
the interaction between skin and stiffener, such as one half-waves or
two half-waves deflection assumptions [31,32] and deflections defined
by trigonometric functions [33,34]. The main limitation of the energy
method is that the deflections of the buckled structures are assumed
empirically, which is hard to guarantee the accuracy of the calculated
results.

In this paper, a buckling analysis based on the equilibrium method is
developed for stiffened panels subjected to bending in the elastic region,
which is simplified as a stiffener with rotational constraints from the
skin. The equilibrium equation of buckling in the equilibrium method is
solved by the Frobenius method to acquire the critical buckling strength
of stiffened panels under a bending moment. A new parameter, the ef-
fective width of stiffened panel, is introduced into the buckling analysis
to consider the effect of non-rigid rotation of the flexible skin. FE simu-
lations of some selected cases have been carried out to compare with the
corresponding analytical results and verify the accuracy of the proposed
analytical solution. Furthermore, the effects of the main geometric pa-
rameters of stiffened panels on the critical buckling strength have been
investigated and discussed based on both the analytical and numerical
results.
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Fig. 1. Schematic diagram of a single blade stiffened panel subjected to bend-
ing: (a) the geometric parameters and (b) the boundary conditions.
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Fig. 2. Schematic showing the x-directional stress distribution (c,) along the
y-axis of a stiffened panel subjected to bending.

2. Problem definition
2.1. Stiffened panels subjected to pure bending

The buckling behaviour of stiffened panels with a single high blade
stiffener subjected to a bending moment is studied in this paper.
Fig. 1 shows the geometric parameters and boundary conditions of the
stiffened panel subjected to pure bending, in which a coordinate system
has been defined. The main geometric parameters that affect the buck-
ling behaviour of the stiffened panels include the stiffened panel length
a, the stiffened panel width b, the skin thickness ty, the stiffener height h
and the stiffener thickness t;;, as shown in Fig. 1(a). The bending mo-
ment M, is applied on the two transverse edges of the stiffened panel
(x=0, x=a) during the loading process. The boundary conditions of the

w
e

X 1 /
Z £ 7
Stiffener\L
y |

P ——
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bending stiffened panel are demonstrated in Fig. 1(b). Two transverse
edges of the stiffened panel are defined as simply supported, while the
two longitudinal edges are treated as free. Since the thicknesses of the
stiffened panels are relatively small compared with other dimensions
(width and length), both the stiffener and the skin of the stiffened pan-
els can be represented as thin plates. Therefore, these two structures are
assumed to follow the Kirchhoff-Love plate theory in this study.

2.2. Stress distributions

According to the Kirchhoff-Love plate theory, a linearly varying
stress is distributed along the y-direction of stiffened panels loaded by
the bending moment M, Fig. 2 illustrates a sketch of the stress distribu-
tion in the bending stiffened panel. The in-plane stress of the stiffened
panel in the x-direction o, can be expressed as:

o‘X:—JO(l—a%):—oo(l—an) (0<n< (h+1,)/h) )

where n=y/h is a normalised y-coordinate and the normalised x-
coordinates is also defined, as £ =x/a. o, is the x-directional stress at
the top of the stiffener (n=0), indicating the maximum compressive
stress in the bent stiffened panel. « is a loading coefficient which de-
scribes the stress distribution and is determined by the stiffener height
and the distance between the neutral plane and the top of the stiffened

panel yq:

a=2 @)
Yo
where
h? .
/ydA IS,7+tSkb(h+t7"> X
WETTAA T T fhtigb ©)

When the stiffened panel is subjected to a bending moment, the load-
ing coefficient « ranges from 1 to 2.

Divide both numerator and denominator in Eq. (3) by h, Eq. (3) be-
comes:

t
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Y
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Since high stiffener conditions are considered in this study, the skin
thickness is much smaller than the stiffener height and then the item
ty/2h < 1 in Eq. (4). Therefore, there are three main parameters that
affect y, according to Eq. (4), including the stiffener height h, the stiff-
ened panel width b and the thickness ratio ty /t,.

Upper edge

Skin

Connecting edge

©

Fig. 3. Buckling mode of stiffened panels subjected to pure bending: (a) stiffener buckling mode, and breakdown diagrams of the free body of (b) the stiffener and

(c) the skin.
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Fig. 4. Simplified model for buckling analysis of stiffened panels loaded by
bending moment.

2.3. Buckling mode and buckling model

There are three types of buckling modes for stiffened panels when
subjected to different loading conditions, including Euler buckling
(overall buckling), skin buckling and stiffener buckling. For the case
of stiffened panels loaded by pure bending investigated in this study
(Fig. 1(b)), the top of the stiffener is in compression and the skin is
in tension, therefore, buckling would firstly occur in the stiffener sec-
tion and the primary buckling mode should be the stiffener buckling.
Fig. 3(a) demonstrates the general stiffener buckling mode, in which w
is the deflection of the stiffener in the z-direction, representing the oc-
currence of buckling, and y is the deflection of the skin in the y-direction
due to the torsion applied by the stiffener.

In order to facilitate the analytical solution of the complicated buck-
ling problem of stiffened panels, the stiffener and the skin sections of
the stiffened panel can be analysed individually, as illustrated in Fig.
3(b) and (c). The stiffener section is subjected to a distribution of lin-
early varying stress of o, at the two transverse edges of x=0 and x=a
(Fig. 2) and the constraints from the skin can be replaced by a bend-
ing moment M, at the connecting edge, as shown in Fig. 3(b). The skin
section is loaded by tension at two transverse edges (Fig. 2) and a mo-
ment M/ along the connecting edge acts as a torsion moment to the
skin due to the buckling of the stiffener. The bending moment M, is the
reaction of the torsional moment M/ and their magnitude is equal. As
the stiffener section is the primary buckling area in the stiffened panels
under bending investigated in this study, the buckling problem can be
simplified to consider the stiffener section only. The effect from the skin
section (the rotational constraint M" in Fig. 3(b)) can be represented
by an elastically built-in constraint in the connecting edge, as shown in
Fig. 4 [16].

The simplified model of buckling of stiffened panels subjected to
pure bending then can be considered as a thin stiffener with two simply
supported loading edges (x=0, x=a), one restrained connecting edge
(y =h) and one free edge (y =0), as shown in Fig. 4. The connecting edge
is equivalently constrained by an elastically built-in boundary condition
which restricts the movement in the z-direction and the rotation in the
yz-plane of the connecting edge by a torsional moment M.

The skin rotational constraint of the elastically built-in boundary
condition is determined by M, + M/ = 0 along the connecting edge, as
illustrated in Fig. 3. Based on Saint Venant’s torsion theory [35], M C’ can
be calculated analytically following the rigid skin assumption, where the
cross section of skin in the yz-plane remains straight after deformation,

(@ (b)
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as shown in Fig. 5(a), in which @ is the rotation angle of the rigid skin
and 6’ is the rotation angle of the stiffener baseline after buckling. The
rigid skin assumption is a correct approximation if the skin does not
distort [16]. However, in practical situations, the skin generally rotates
flexibly with distortions, as shown in Fig. 5(b). The analytical solutions
considering the practical flexible skin case cannot be performed directly
since the deformation of flexible skin under torsion is too complicated
to be analytically modelled [36]. Hence, a compensation method for
the flexible skin case with the assistance from FE simulations has been
proposed in this study and will be introduced later.

2.4. Boundary conditions of buckling model

M is determined by the rotation angle of the skin 6 and the torsional
stiffness of the skin based on the rigid skin assumption, while M, is
determined by the deflection of the stiffener w and the flexural stiffness
of the stiffener D. According to the rotational continuity condition along
the skin-stiffener intersection [33], the rotation angle of the skin 0 is
equal to the rotation angle of the stiffener baseline 6, which gives:

0= 0= <(3_w> ®)
0y ) o
Base on Eq. (5), M : can be expressed by the deflection of stiffener w:
M|, = <GJ 9 ‘)2“’> (6)
=h = sk3- 33
¢ " ox oxay ) ,_,,

where GJg is the torsional stiffness of the skin, in which G is the shear
modulus of the material and Jg is the polar moment of inertia of the
skin in rigid skin assumption. G and J can be expressed as:

E

T 2(1+0) M
b3

Jo=—" ®

where E and v are respectively Young’s modulus and Poisson’s ratio of
the material. In the simplified model, the upper edge is free and the
connecting edge is elastically built-in. The boundary conditions of the
simplified buckling model of stiffened panels can be represented math-
ematically as below:

(1) Free at the upper edge (y=0)
e The vertical shearing force V,, along the upper edge is free [20],
which gives:

3
Vuply:0:D<T+(2_U) =0 (&)

 The moment M, along the upper edge is free [20], which gives:

0w 0*w
M, |=0=D<—+v—> =0 (10)
uply 92 Ox2 =0
where D is the flexural stiffness of the stiffener, as:
Ef
D= —3 (1)
12(1-0?)

(1) Elastically built-in at the connecting edge (y =h)

Fig. 5. Buckling of stiffened panels with (a) rigid skin and (b) flexible
skin conditions.
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o The deflection w along the connecting edge is zero:

Wwlyepp =0 (12)
e The moment along the connecting edge is in an equilibrium condi-
tion:
Pw | w d Pw
M|,y + M D= +0— | +GJy—~— =
ly=n = < <By Ud 2) sk ox (3x0y>y=h

13)

Replacing x and y by corresponding normalised coordinates ¢ and
n, the boundary conditions in Egs. (9), (10), (12) and (13) can be sum-
marised as:

1 dw 1 Pw
——+Q2-0)— =
n on? a?h 0820y ) o

(B2eotoe)
W\wop 7a oz (14)

(W)y=1 =0
<<162w 1aw> 1002w>
D\ =— k™57 3% 3200, =0
h? on? a2 0&2 a?h 9& d9éon /,_,

3. Analytical method

3.1. Buckling analysis with rigid skin case

In this section, the equilibrium method is used to solve the buckling
problem of stiffened panels with the rigid skin case by the proposed sim-
plified model. The partial differential form of the equilibrium equation
for the model under a pure bending moment is given by [20]:

o*w 9 o*w o*w

v e + + v _ X Yf 02
ox4 ax2y2 | oyt

D ox2

15)

Using the normalised coordinates, the partial differential equation
becomes:

— +
a? 02 | ot 2 D 552

h* otw 2h2 w

h* o*w Fw _ moggh’ Pw
a* o0&

(16)

For thin plates with the simply supported boundary condition, the
free edges of the buckled plates have been reported to generally show si-
nusoidal half-waves patterns [28], and hence the deflection w in the free
edge of stiffener along the x-direction can be modelled by the following
equation [20]:

W= f,(m)sin (mr&) (17

where m is the number of sinusoidal half-waves in the x-direction, f;,,(n)
is a function of n and m to describe the displacement in the z-direction,
which satisfies the boundary conditions of the upper edge and the con-
necting edge of the simplified model.

Substituting o, in Eq. (1) and deflection w in Eq. (17) into Eq. (16),
it becomes an ordinary differential equation:
< d*f,, 2 d% f

Pt A fm> yia? ‘”’ (1—an>fm (18)

where y =mzh/a. To simplify Eq. (18), the buckling coefficient k, which
is the non-dimensional form of buckling strength [20], is used and
Eq. (18) becomes:

A Y )

4 2 2
+ -y rnk(l —a =0 19
i (w* — w72 k(1 - an)) £, (19
where
O-Otsth2
k= —3 20
2D (20)

Since the differential equation Eq. (19) is a transcendental equation,
it cannot be solved in a closed-form solution. Frobenius method is used
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to solve the differential equation by expressing f,,(#) in a power series
solution, as [22,23]:

o
ROEDWemwi @n
n=0
where C,, , is a coefficient related to the number of half-waves m and
the number of power series n. The second and fourth derivatives of f,, (1)
in Eq. (19) can be expressed as:

[

f"m(ﬂ) = Z (n+ 2)!/”!Cm,n+2’l"
\ "0 2)
P =3 (+H/n'Cp
n=0

Eq. (19) then can be updated as follows:

2

n=1

(n+4)!
n!

(n+2)!
n!

Cm$n+4 - 2W2 Cm,n+2 + W2<W2 - ”zk)cm,n

- awzﬂzkcm,n—llnn} +[24C, 4 — 4 Cp + v (v = 7°k) C|n® = 0
(23)
As Eq. (23) is satisfied for all » values, ranging from O to 1, the co-

efficients of n° and #" (n=1, 2, 3, ...) in Eq. (23) have to be zero, one
obtains:

24C, 4 — W2Cpy + 2 (w? = 7%k)C,g = 0 (24)

(n+DYICpy s = 202 (1 + DU/ 0ICypr + w2 (W2 = 77K) C

—ay’n*kC,,,_; =021 (25)

Cin 4 then can be expressed by Cp, 5, C, ¢ and the buckling coefficient
k according to Eq. (24):
w2

Cna =57 Y (4C,5 — (w? = 72K)Cprg) (26)
The recursive equation of Cp, , .4 (n=1, 2, 3, ...) can be given from
Eq. (25):
nly? (2(n+ D(n +2)Cpy i — (w? = 72k) C,y — an?kCyy i)
Cm,n+4 = (27)

(n+4)!

Therefore,Cm,n (n > 4) can be expressed in terms of the first four
coefficients Cp, 9, Cp1, Cma2s Cps and k according to Egs. (26) and
(27). The deflection of the stiffener w represented with four coefficients
Cm0s Cm1> Cm2> Cm3 and k is then obtained by substituting Egs. (21),
(26) and (27) into Eq. (17).

The boundary condition is used to determine the buckling coeffi-
cient k. The boundary condition of the stiffened panel in Eq. (14) can
be simplified by substituting Eq. (17), as:

0 fin af,
+ Q2 -yt =0
<a 5+ Y o >n=0
62
< fzm +vu/2> =0
I\ oy =0 (28)
(f”’)n=1 =0
92 d
< S +C,ﬁ> =0
on? on =1
where
GJk m’z h 2 2 bh tsk

C, is the rotational constraint coefficient of the skin which is related
to the width and length of the stiffened panel, the stiffener height and
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the thickness ratio. C, varies from 0 (free rotation) to oo (fixed rota-
tion) in the elastically built-in condition [27]. Substitute Eq. (21) into
the boundary condition of Eq. (28), the four boundary functions can be
expressed by C,, ;:

2C,0 + vy/zcmvo =0
6C,,3+ 2 —0w?C, =0

)

;l Cpn =0 (30)

o0
> n(n—1C,,+C, 21 nC,,, =0
P

n=1

Eq. (30) can be represented by a set of linear homogeneous equations
using Cp, 0, Cp15 Ci2> Cy3s @s:

Ay Ap A Ay||C

m,0
Ay Ap  Ap AyllCuil _ a1
A3 Az Ayzz Ay|| G
Ay Ap Ay Ay||Cus

where Aji=1~4,j=1~4)are the coefficients of the linear homoge-
neous equations, in which A;; =vy?, Aj3=2, Ayy =(2—V)y?, Ay, =6,
A1y =A14=Ay =Ay3=0and other A; (i =3, 4, j = 1 ~ 4) are related to
k and can be obtained by substituting Eqs. (26) and (27) into Eq. (30).
The buckling condition is satisfied when the determinant of the matrix
of the coefficients vanishes, with which the k value can be directly cal-
culated.

Ay Ap A Ay
Ay Ap  Ap Ay
A3 Aznp Aypz Ay
Ay Ap A Ay

=0 (32)

The exact deflection of the stiffener Eqs. (17) and ((21)) can be cap-
tured with infinite series (n — o0), with which an exact solution of k will
be obtained. However, it is unrealistic to use infinite series for the so-
lution. A convergence analysis has been performed, which shows that
the obtained k values could maintain five significant figures with n=32.
This accuracy is high enough for the current study and all the following
results were approximately calculated with n=32. A set of solutions can
be calculated for each number of half-waves m, and k is obtained as the
minimum positive value of all eigenvalues. Then the lowest value of k
is the critical buckling coefficient k., of the stiffened panel and the cor-
responding m value indicates its buckling mode in the free upper edge.

After obtaining k.., the critical buckling strength of the stiffened
panel under bending can be calculated by [37]:

kCV”ZE <tét>2
Op=—o— (2 33)
Co(l-?)\ h (

3.2. Buckling analysis with flexible skin case

This section proposed a new method to first-time consider the effect
of flexible skins with non-rigid rotation behaviour on buckling analysis
of stiffened panels by combining analytical methods with some basic FE
simulations.

The rotation of skin is caused by the non-uniform torsional moment
(M) along the connecting edge due to the buckling of the stiffener.
The torsional moment is equal to the bending moment on the connect-
ing edge of the stiffener (M_), which is a sinusoid function according to
Egs. (13) and (17). As indicated in Section 3.1, M L’ cannot be obtained
analytically for the flexible skin case, FE simulations have been used
in this study to investigate the detailed non-rigid rotation behaviour of
the flexible skin subjected to a torsional moment with a sinusoid func-
tion along the connecting edge. A quarter of the unit skin model with
one half-wave region is selected for FE simulations and the correspond-
ing boundary conditions of the model are shown in Fig. 6. The length
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Fig. 6. FE model for the skin subjected to the torsion along the centreline.
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Fig. 7. Deflection of skin in the y-direction (x) for different skin widths sub-
jected to the same torsion (solid lines are FE simulation results with flexible
skins and dashed lines are analytical results with rigid skins).

and width of the model are respectively a/2m and b/2, and a torsional
moment M /2 is considered in the analysis:

! !
Mo Moo (=) 34)
2 a

where M ; o is the torsion moment at the joint between the connecting
edge and the symmetry line in the whole skin. FE simulations for the
models with various width conditions were performed. The geometric
sizes of the models include: a length of 50 mm, a thickness of 1 mm and
a varying width ranging from 25 mm to 150 mm. As the deformation of
the skin subjected to a torsion moment is proportional to the magnitude
of the torsion in the elastic region, the value of the torsion moment will
not affect the trend of the skin deformation. Hence, M éo is set as 20
(N m)/m in these FE models for demonstration in this study.

The deflections of the skin at the symmetric line with different skin
width conditions from the FE simulation results are shown in Fig. 7 and
two analytical results with the rigid skin assumptions are also plotted
for comparison. It can be seen that when the width is small, the rotation
behaviour of the skin agrees well with the analytical result following
the rigid skin assumption, indicating that the rigid skin assumption is
satisfied for the skin with a small width. While with the increasing skin
width, the cross-section of the skin becomes deformable and distorts
heavily, which shows apparent differences with the analytical results,
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Fig. 8. Schematic diagram of effective width for flexible skin cases.
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Fig. 9. Evolution of effective width to length ratio mb,¢/a versus mb/a of stiff-
ened panels.

and the rigid skin assumption is not appropriate for these cases. In addi-
tion, with the increasing skin width, the deformed skins tend to converge
to the same shape. This phenomenon can be explained as that the tor-
sion is only applied on the connecting edge of the skin, and its influence
region on the flexible skin is thus limited.

M on the connecting edge of skin is only determined by the rota-
tion angle of skin ¢’ and the torsional stiffness, as indicated in Eq. (6).
As shown in Fig. 7, when the skin width is large, the rotation angle be-
tween the stiffener and skin in the flexible case 6y is larger than that in
the corresponding rigid skin case 6,. The larger 0y in the flexible skin
case indicates a smaller torsional stiffness than that with the rigid skin
assumption and hence, the analytical solution for rigid skin cases over-
predicts the torsional stiffness of skins, leading to inevitable errors of
the analytical solution.
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Table 1
Geometry of the FE models (unit: mm).
Set 1 Set 2 Set 3 Set 4
a b a b a b a b

50.0 125 100 50.0 800 100 532 200
50.0 375 100 100 160 100 229 200
50.0 625 100 150 90.0 100 146 200
50.0 875 100 200 60.0 100 107 200
50.0 1125 100 250 47.0 100 842 200
500 1375 100 300 380 100 696 200

In order to overcome this problem, this paper introduces a new con-
cept of effective width, b, in the buckling analysis to amend the tor-
sional stiffness according to flexible skin conditions. b, is defined as
the width of an equivalent rigid skin which performs the same torsional
stiffness with the flexible skin case having an actual width of b, in which
the rotation angle of both skins are the same when they are subjected
to the same torsion, as shown in Fig. 8. by can be expressed according
to the torsional stiffness of the flexible skin GJ S’ o as:

3GJ S’ & Js’kb

by = =— (35)
I6n

The torsional stiffness of the flexible skin is calculated by torsion
divided by the rotation angle per unit length according to Eq. (6), as:

!

GJ/, = —Mc 36
sk T 029/ (36)

0x2

To obtain the torsional stiffness of the flexible skin from FE simu-
lation results, Eq. (36) is re-written based on the second-order forward
difference as:

1 A2
MCOAx

(ef)x=0 - Z(Gf)x=Ax + (Bf)x=2Ax

where Ax is the spatial increment of neighbouring nodes. When Ax tends
to 0, by achieves an exact value. According to the convergence test on
Ax with the criterion of 1% error, Ax is set to a/20m.

Substituted Eq. (37) into Eq. (35), the effective width beff can be
calculated, when the rotation angles (0f)x: 0 (Gf)x: ax and (9f)X: oAy are
obtained from the FE simulations:

I AY2
M 0 Ax b

0f>x=0 - 2(€f)x=Ax + (€f>x=2Ax GJSk

To investigate the effective width b, with different skin aspect ratios

mb/a, four sets of FE simulations of skins with different dimensions were

carried out, as listed in Table 1. The length of the skin is constant with

varying skin widths in Sets 1 and 2, while in Sets 3 and 4 the skin width
is constant with different skin lengths.

Gl ~ @37

boys ~ ( (38)

Fig. 10. FE model of a single blade stiffened panel subjected to bend-
ing.
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Table 2

Geometry and FE results of critical buckling moment and coefficient for test cases.
a(mm) b(mm) h(mm) tgG(mm) ¢, (mm) tg/t, «a k M, (Nm)

Group 1 (25 mm < a < 200 mm)
25.0 50.0 25.0 1.00 1.00 1.00 1.18 2.01 42.7
375 50.0 25.0 1.00 1.00 1.00 1.18 143 30.4
50.0 50.0 25.0 1.00 1.00 1.00 1.18 1.32 28.0
75.0 50.0 25.0 1.00 1.00 1.00 1.18 1.42 30.2
100 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6
125 50.0 25.0 1.00 1.00 1.00 1.18 1.37 29.0
150 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6
175 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6
200 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6
Group 2 (12.5mm < h < 100 mm)
100 50.0 125 1.00 1.00 1.00 1.07 1.33 31.0
100 50.0 14.3 1.00 1.00 1.00 1.09 1.35 30.8
100 50.0 16.7 1.00 1.00 1.00 1.11 1.34 299
100 50.0 20.0 1.00 1.00 1.00 1.14 1.30 284
100 50.0 25.0 1.00 1.00 1.00 1.18 1.28 273
100 50.0 333 1.00 1.00 1.00 1.24 1.26 25.7
100 50.0 50.0 1.00 1.00 1.00 1.32 1.24 240
100 50.0 66.6 1.00 1.00 1.00 1.39 1.49 274
100 50.0 100 1.00 1.00 1.00 1.50 2.23 383
Group 3 (50 mm < b < 200 mm)
100 25.0 25.0 1.00 1.00 1.00 1.32 1.20 23.6
100 50.0 25.0 1.00 1.00 1.00 1.18 1.34 28.6
100 75.0 25.0 1.00 1.00 1.00 1.12 1.34 294
100 100 25.0 1.00 1.00 1.00 1.09 1.33 29.7
100 125 25.0 1.00 1.00 1.00 1.07 1.32 29.8
100 150 25.0 1.00 1.00 1.00 1.06 1.31 299
100 175 25.0 1.00 1.00 1.00 1.05 1.31 29.8
100 200 25.0 1.00 1.00 1.00 1.04 1.30 30.0
Group 4 (0.25 < ty [ty < 1)

50.0 50.0 25.0 0.25 1.00 0.25 1.50 1.02 17.5
50.0 50.0 25.0 0.50 1.00 0.50 1.32 1.07 20.5
50.0 50.0 25.0 0.75 1.00 0.75 1.24 1.19 24.2
50.0 50.0 25.0 1.00 1.00 1.00 1.18 1.32 28.0

The results of the effective width are obtained from the FE modelling
results and Eq. (38), and the variation of the effective width to length
ratio mby/a versus mb/a is shown in Fig. 9. As the results from four
sets of models with different geometric parameters of stiffened panels
all show the same trend, as shown in Fig. 9, the relationship between
mb/a and mb/a seems to be independent on the geometric properties
of the skin models. mb,g/a increases with a nearly proportional trend
with mb/a initially, the increasing speed decreases afterwards with fur-
ther increasing mb/a values until reaching a saturated level. It is found
that this relationship can be perfectly fitted by a hyperbolic tangent
equation. For the data shown in Fig. 9, the fitted equation is:

a

1.072mb
beys = 0.9557tanh ( =22 ) (39)

m

By replacing the width b in Eq. (30) with b, the non-rigid rotation
effect of the flexible skin can be considered for the analytical solution
of the buckling analysis. The results and accuracy of the original and
updated analytical solutions for stiffened panels with various geometric
conditions will be demonstrated and discussed in the following sections.

4, Finite element method

To verify the effectiveness of the analytical solution and the new ef-
fective width concept for buckling of stiffened panels introduced in this
study, FE simulations were carried out with the commercial software
ABAQUS to obtain the critical buckling strength o and the buckling
mode of stiffened panels. The buckling coefficient k can be calculated
from the obtained o, by Eq. (33). The FE model for the stiffened panel is
shown in Fig. 10. The model was constrained to a simply supported con-
dition: the two transverse edges of the skin were fixed in the y-direction
and the two longitudinal edges were free; the middle line of the skin

was fixed in the x-direction and the two transverse edges of stiffener
were fixed in the z-direction. The linearly varying stress o, represent-
ing the bending moment (Eq. (1)) was applied on the two transverse
edges of the stiffened panel model. The material was defined as an alu-
minium alloy with E=73.8 GPa and v = 0.33 [38]. It is documented that
the S4R element in ABAQUS can provide accurate solutions for large-
scale buckling analysis efficiently [39], and the feasibility and accuracy
of the element in solving buckling problems of stiffened panels have
been validated in many previous studies [33,40]. Hence, the stiffened
panel was modelled with S4R elements in this study. The mesh size con-
vergence analysis was performed and a proper number of elements of
the model is selected as 1800, with a mesh of 24 x 50 elements in the
skin, and 12 x 50 elements in the stiffener. In ABAQUS, the buckling
behaviour is analysed by solving the following equilibrium equations
[41]:

[[k] - AK]G] (8} = {0} (40)

where 1 is the buckling load eigenvalue, [k] and [k]; are stiffness ma-
trices and geometric stiffness matrices and {6} is the eigenvector.

5. Results and discussion

FE simulations of four groups of stiffened panels with arbitrarily se-
lected different geometric conditions were carried out for comparison
and verification. The buckling coefficients k of stiffened panels subjected
to bending with different geometric parameters were calculated using
the proposed analytical solutions. The critical buckling moment M,
which is the maximum moment that the stiffened panel can bear with-
out buckling, has also been calculated. Table 2 lists the FE results for the
critical buckling moment and coefficient for all the test cases. The effects
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of the four main geometric parameters (stiffened panel length a, stiff-
ened panel width b, stiffener height h and thickness ratio t/t,) on the
buckling strength of stiffened panels are reported and discussed in the
following sections. Although these parameters are arbitrarily selected,
they serve to verify the effectiveness of the proposed analytical method.
The method can be applied for solving buckling problems of stiffened
panels with different geometric parameters.

To visually show the buckling mode shapes of stiffened panels inves-
tigated in this study, the FE results of some buckling mode shapes (m =
1 ~ 4) of a selected stiffened panel (a=100 mm, b=50 mm, h=50 mm,
ty = 1mm, t; = 1 mm) are displayed in Fig. 11. The buckling mode
shape in Fig. 11(b) (m=2) is the critical buckling mode since the corre-
sponding buckling coefficient k is the minimum for the selected stiffened
panel.
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Fig. 11. Buckling mode shapes of a selected stiffened panel
(@a=100mm, b=50mm, h=50mm, tg = 1mm, t, = 1 mm) for (a)
m=1, (b)m=2, (¢c) m=3 and (d) m=4.

5.1. Effect of stiffened panel length

Buckling analysis of the stiffened panels with various lengths a listed
in Table 2 (Group 1) has been performed numerically and analytically
with rigid skin and flexible skin assumptions. The obtained k values with
different lengths a are shown in Fig. 12. A fair agreement with a slight
difference between analytical results with the rigid skin assumption (b)
and FE results can be observed in Fig. 12(a). The use of effective stiff-
ened panel width in analytical solution with the flexible skin assump-
tion (beg) predicts a slight lower k value compared with the rigid skin
cases in Fig. 12(a) and achieves an excellent agreement with FE results,
as shown in Fig. 12(b). Meanwhile, the critical lengths, at which abrupt
changes of the buckling mode exist, become slightly larger with the flex-
ible skin assumption than that with the rigid assumption. The buckling
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Fig. 12. Buckling coefficient k and buckling mode (half-waves m) versus stiff-
ened panel length a with (a) stiffened panel width in rigid skin assumption and
(b) effective stiffened panel width in flexible skin assumption (symbols — FE,
lines — analytical results (Ana.)).

Table 3

Original width b and effective width b, of
stiffened panels with different numbers of half-
waves m in buckling mode.

m=1 m=2 m=3 m=4

b (mm) 500 500 500  50.0
by (mm) 459 374 286 229

coefficient k is relatively large with small a values and decreases signif-
icantly as a increases. After the buckling coefficient k reaches the mini-
mum value, it begins to increase slightly. The stiffened panel is buckled
with a one half-wave pattern (m=1) at this stage. The buckling mode
of the stiffened panels increases from one half-wave to more half-waves
as a increases. Although there is a reducing-increasing cycle for each
buckling mode afterwards, it can be seen that the buckling coefficient k
remains relatively stable when m > 1.

5.2. Effect of stiffener height

According to the equilibrium equation (Eq. (16)), the reciprocal
of the stiffener height h™! is relevant to k and their relationship from
the tested cases in Table 2 (Group 2) is shown in Fig. 13. The corre-
sponding effective stiffened panel width b, with different numbers of
half-waves m for stiffened panels in Group 2 is calculated according to
Eq. (39) and the results are shown in Table 3.

Fig. 13 shows the effect of stiffener height on the buckling coeffi-
cient, with b in rigid skin assumption in Fig. 13(a) and b in flexible skin
assumption in Fig. 13(b) respectively. The differences of buckling coef-
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Fig. 13. Buckling coefficient k and buckling mode (half-waves m) versus recip-
rocal of stiffener height h~! with (a) stiffened panel width b in rigid skin as-
sumption and (b) effective stiffened panel width b in flexible skin assumption
(symbols - FE, lines — analytical results (Ana.)).

ficient between the analytical results with the actual width and corre-
sponding FE results increases when the reciprocal of the stiffener height
increases, due to the increasing difference between by and b with in-
creasing m, as listed in Table 3. An apparent improvement in buckling
coefficient prediction has been achieved when b, in flexible skin as-
sumption was used, which shows an excellent agreement with corre-
sponding FE results.

The effect of h~1 on the buckling coefficient k is similar to that of the
stiffened panel length a. The buckling coefficient decreases abruptly first
and then increases slightly as h~! increases when the buckling mode is of
one half-wave (m=1) pattern, and a repeated slight reducing-increasing
cycle of buckling coefficient exists for subsequent buckling modes. In the
later stage, the buckling coefficient increases as the skin rotation con-
straints coefficient C, increases. According to Eq. (29), C, is positively
related to the variables of m?, by and h. When h~1 increases, though
b.g and h decrease, C, still increases first at each buckling mode due to
the increase of m.

5.3. Effect of stiffened panel width

In this section, the effect of stiffened panel width on buckling be-
haviour of stiffened panels is discussed according to the test cases in
Table 2 (Group 3). The analytical results of the buckling coefficient k
calculated with b in rigid skin assumption and b in flexible skin as-
sumption versus the stiffened panel width b are respectively compared
with corresponding FE results in Fig. 14(a) and (b). A larger difference
between the analytical results with b in rigid skin assumption and FE
results can be observed when the stiffened panel width increases, while
the accuracy of analytical results is significantly improved with by in
flexible skin assumption. The high accuracy of analytical solution with



W. Zhou, Y. Li and Z. Shi et al.

257
Buckling mode (Ana. with b)
F-=-8B-- - — = = 1= = = - —-#12
Buckling mode (FE)

Buckling coeffici\e'znt (Ana. with b)

«1.5-/://——— g
¢ * * * * * *
A

o !
1t : Buckling coefficient (FE)
= ! 11
0.5* . - g : : g
25 50 75 100 125 150 175 200
b (mm)
()
257
Buckling mode (Ana. with b ﬁ,)
,—-cu———u—-—D—-—%-——E——Ee——-uz
2t : Buckling mode (FE)
1
I
Buckling coefficient (Ana. with b
x 15f 9 \ ( ot 3
/Ir—' - ¥ % + 3 3
1t : Buckling coefficient (FE)
= - 11
0.5+ : : : - - *
25 50 75 100 125 150 175 200
b (mm)
(b)

Fig. 14. Buckling coefficient k and buckling mode (half-waves m) versus panel
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by is verified by the numerical results. The buckling coefficient k in-
creases with a small stiffened panel width, and then becomes stable
with a slightly dropping trend as the stiffened panel width increases.
The buckling mode of the stiffened panel changes from one half-wave
mode (m=1) to two half-waves mode (m =2), when k reaches the stable
level.

According to Egs. (19), (30) and (39), there are three factors related
to the stiffened panel width that affect k, namely, skin rotational con-
straint (C,), flexible skin effect (beff) and loading coefficient (a). C, in-
creases when the stiffened panel width increases, leading to the initial
increase of k in Fig. 14. Since the flexible skins tend to deform to the
same shape with increasing stiffened panel width, as shown in Fig. 7, the
effective width b.g remains relatively stable with high stiffened panel
width conditions, and thus, a comparatively stable value of k can be ob-
served in Fig. 14. In addition, the loading coefficient « declines when
the stiffened panel width b increases, which contributes to the slight
decrease of the buckling coefficient k with further increasing stiffened
panel width.

5.4. Effect of thickness ratio

The effect of the thickness ratio tg/t,; on the buckling coefficient k
is discussed with geometric parameters given in Table 2 (Group 4). The
results of k calculated by b and b versus tg/t;, are shown in Fig. 15(a)
and (b). The analytical results with b show a good agreement with FE
results at low tg/t; values, however, the difference between them in-
creases with increasing ty/t; values. Meanwhile, results with b show
an excellent agreement at all t;/t; values investigated in this study,
demonstrating the prediction accuracy of the proposed analytical solu-
tion using b,y Increasing thickness ratio leads to the increase of the
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skin rotational constraint according to Eq. (30), and thus, resulting in a
larger buckling coefficient, as shown in Fig. 15.

According to the parametric study in this section, the effects of a
and h~! on the buckling coefficient of stiffened panels are similar. Espe-
cially, the effects are significant when a/h is small. b has a small effect
on the buckling coefficient when it is relatively large due to the twist
of flexible skin, while the increase of tgy/t; will increase buckling co-
efficient. As demonstrated in the comparison with FE simulations, the
proposed analytical solution with the new parameter, effective width,
achieves a very high accuracy to calculate the buckling strength of the
stiffened panels under bending.

Although the analytical method for buckling analysis is developed
based on stiffened panels with one blade stiffener in this study, it can be
extended for stiffened panels with other types of single stiffener (such
as T-, Z-, J- shapes) or multiple stiffeners, by modifying the boundary
conditions of the simplified model according to particular cases. For
example, the buckling problem of stiffened panels with a T-shape stiff-
ener can be directly calculated by replacing the free boundary condition
for the top of the simplified model in this study to an elastically built-
in boundary condition. To consider the buckling analysis of stiffened
panels with multiple stiffeners, the boundary condition at the longitu-
dinal edge of the stiffened panels can be modified from free to sym-
metric boundary condition (rotation angle equal zero) or antisymmet-
ric boundary condition (transverse displacement equal zero), and the
effective width with the new boundary conditions, which is obtained
by the FE assisted method, can be employed in the analytical solution.
The analytical method proposed in this study can be used to guide the
design of stiffened panels and applied to investigate the limit curva-
ture radius and/or the optimal geometric parameters of stiffened panels
subjected to a bending moment during forming processes to avoid pos-
sible buckling.
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6. Conclusions

An analytical solution for the elastic buckling analysis of stiffened
panels subjected to pure bending has been developed in this study,
whose effectiveness has been verified by corresponding FE simulations
of some selected cases. Based on the developed analytical solution, the
effect of the main geometric parameters of stiffened panels on their
buckling strengths has been discussed. The following conclusions can
be drawn:

1

The buckling problem of a stiffened panel subjected to bending can
be simplified as a stiffener with a special elastically built-in bound-
ary condition to consider the effect of skin-stiffener interaction. The
analytical solution proposed for this simplified model can effectively
calculate the critical buckling strength of stiffened panels.

A new concept of effective width (b.g) is proposed for buckling anal-
ysis of stiffened panels to account for the flexible skin conditions in
real cases, and a particular relationship between mb,g/a and mb/a,
which is independent on the geometric properties of stiffened pan-
els, has been quantitatively obtained through an FE assisted method.
It significantly improves the accuracy for buckling strength predic-
tion and reduces the maximum difference between analytical results
and simulation results from 12.2% with the conventional rigid skin
assumption to only 3.9%.

The buckling coefficient k of stiffened panels decreases abruptly with
increasing length a at first, and stays at a relatively stable level with
further increase of the length when the buckling mode of stiffened
panels changes from one half-wave (m=1) to higher order half-
waves. The reciprocal of the stiffener height h~! shows a similar ef-
fect on k.

With increasing stiffened panel width b, the buckling coefficient ini-
tially increases and then becomes stable with an insignificant de-
crease. Meanwhile, the increasing thickness ratio ty./t; leads to the
increase of the skin rotational constraint, resulting in a larger buck-
ling coefficient.
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