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In this study, an analytical solution has been developed for the elastic buckling analysis of stiffened panels sub- 

jected to pure bending, and the effect of main geometric parameters of the stiffened panels on buckling strength 

has been investigated. A simplified model of stiffened panels has been proposed for buckling analysis, where an 

elastically built-in boundary condition replaces the skin’s effect on buckling of the stiffened panels. The equilib- 

rium method with a conventional rigid skin assumption and a new flexible skin assumption is developed for the 

simplified model to analytically capture the buckling behaviour of the stiffened panels. To consider the non-rigid 

rotation effect of flexible skin on buckling of stiffened panels, a new parameter, the effective width of stiffened 

panels, has been introduced, and a finite element (FE) assisted method has been employed to obtain its value 

for different stiffened panels. The results show that the flexible skin assumption significantly enhances the accu- 

racy of buckling strength prediction compared with the conventional rigid skin assumption, and the maximum 

difference between analytical results and corresponding FE simulations is decreased from 12.2% with rigid skin 

assumption to only 3.9%. Based on the proposed analytical solution, effects of main geometric parameters of the 

stiffened panels (the stiffened panel length and width, the stiffener height, and the ratio of the skin thickness 

to the stiffener thickness) on their buckling coefficients have been discussed. Increasing stiffened panel length 

and/or reciprocal of stiffener height leads to an initial abrupt decrease of the buckling coefficient until reaching 

a stable level. When the stiffened panel width increases, the buckling coefficient first increases and then remains 

stable, whereas increasing thickness ratio leads to the increase of the buckling coefficient. 
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. Introduction 

Stiffened panels are widely used in marine and aerospace applica-

ions due to their lightweight and high bending stiffness characteristics

1] . Different methods have been employed to produce stiffened pan-

ls [2] . The conventional built-up stiffened panels are manufactured

y connecting the formed skins and stiffeners through welding [3] or

iveting technologies [4] . The integrally stiffened panels, which are ma-

hined or extruded from a single thick plate [1] , become more and more

opular, due to their advantages of higher crack growth life and lower

anufacturing cost compared with built-up stiffened panels [5] . Some

orming technologies, such as press bend forming [6,7] and creep age

orming [5,8] , have been reported to be suitable methods for forming

ntegrally stiffened panels into desired shapes. More recently, Hua and

o-workers developed a new Space Envelope Forming (SEF) method,

n which the envelope of motion paths of a rocking tool on workpiece

orms the profile of components, for manufacturing integral thin-walled

igh web rib panels [9] . They have also developed theories for calcu-
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ating the rocking die motion track to design non-rotary rocking tool

nd for interference judgement between the rocking tool and compo-

ents, and have applied non-rotary rocking tools to produce thin-walled

ear (under circular motion) [10,11] and thin-walled gear rack (under

traight motion) [12] . These pioneer experimental [10] and theoretical

11] achievements have opened a new scope for the manufacturing of

ightweight panels with integrated stiffeners. 

Flat stiffened panels are often formed to desired shapes for partic-

lar applications by different forming technologies such as creep age

orming, during which bending is one of the most common loading

onditions. Buckling may occur in the stiffener area of the stiffened

anels during bending due to the high concentrated stresses at the top

f the stiffeners, which could lead to failure of stiffened panels in the

orming process [13] . On the other hand, stiffener design can be opti-

ised to avoid possible buckling problem. Hence, in order to achieve

he successful forming and guide the design of stiffened panels, it is

ecessary to understand their buckling behaviour subjected to bending

onditions. 
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Nomenclature 

a Length of stiffened panel (mm) 

A Area (mm 

2 ) 

A ij Coefficient of linear homogeneous equations (–) 

b Width of stiffened panel (mm) 

b eff Effective width of stiffened panel (mm) 

C m,n Coefficient of deflection function of stiffened panel (–) 

C r Non-dimensional rotational constraint coefficient of 

skin (–) 

D Flexural stiffness of stiffener (GPa mm 

3 ) 

E Young’s modulus (GPa) 

f m 

Deflection function of stiffened panel in the y -direction 

with respect to numbers of half-waves (–) 

𝑓 
′′
𝑚 

, 𝑓 
(4) 
𝑚 The second and fourth derivatives of f m 

(–) 

G Shear modulus (GPa) 

h Height of stiffener (mm) 

J sk , 𝐽 
′
𝑠𝑘 

Polar moment of inertia of rigid skin and flexible skin 

respectively (mm 

4 ) 

k, k cr Non-dimensional buckling coefficient and its critical 

value (–) 

[ k ], [ k ] G Stiffness matrices and geometric stiffness matrices re- 

spectively (–) 

m Number of half-waves in the x -direction in a buckling 

mode (–) 

M c Moment per unit length applied on connecting edge 

of stiffener by skin which acts as a bending moment 

((N m)/m) 

𝑀 

′
𝑐 

Moment per unit length applied on connecting edge 

of skin by stiffener which acts as a torsional moment 

((N m)/m) 

𝑀 

′
𝑐0 Moment per unit length at joint of connecting edge and 

symmetric line ((N m)/m) 

M cr Critical buckling moment (N m) 

M up Moment per unit length on upper edge of stiffened panel 

((N m)/m) 

M z Moment applied on stiffened panel in the z -direction 

(N m) 

n Non-negative integer (–) 

t sk , t st Thickness of skin and stiffener respectively (mm) 

V up Vertical shearing force per unit length along upper edge 

of stiffened panel (N/m) 

w Deflection of stiffener in the z -direction (mm) 

x, y, z Coordinates (–) 

Δx Spatial increment of neighbouring nodes (mm) 

y 0 Distance between neutral axis of stiffened panel and top 

of stiffened panel (mm) 

𝛼 Loading coefficient (–) 

{ 𝛿} Buckling eigenvector (–) 

𝜉, 𝜂 Non-dimensional coordinates in x and y -directions, de- 

fined as x / a and y / b respectively (–) 

𝜃, 𝜃′ Rotation angle of skin and stiffener respectively (rad) 

𝜃f , 𝜃r Rotation angle of flexible skin and rigid skin respec- 

tively (rad) 

𝜆 Buckling load eigenvalue (–) 

𝜇 Deflection of skin in the y -direction (mm) 

𝜈 Poisson’s ratio (–) 

𝜎x In-plane stress in the x -direction (MPa) 

𝜎cr Critical buckling strength (MPa) 

𝜎0 In-plane stress in the x -direction at top of stiffener 

(MPa) 

Finite element (FE) method has been used to calculate critical buck-

ing strengths of stiffened panels under different loading conditions,
uch as compression and bending, whose effectiveness has been vali-

ated by some buckling tests [14,15] . However, a long simulation time

s needed to obtain accurate results. The total simulation time could

e significantly long in the design of stiffened panels, as an iterative

ptimisation is generally needed and the critical buckling strength has

o be calculated at each iteration [16] . Hence, analytical solutions for

uckling analysis of stiffened panels, which can achieve comparatively

ccurate results in an extremely short time, is very much in need [17] . 

Currently, two main analytical methods are generally used to solve

he buckling behaviour of structures: the equilibrium method and the

nergy method (Ritz method). In the equilibrium method, the equilib-

ium differential equation of buckling is directly solved based on the

oading and deflection functions of the structures with corresponding

oundary constraint equations [18,19] . The equilibrium method can

btain exact results of critical buckling strength with high efficiency

nd has been widely employed for buckling strength calculations of

hin plates with different loading and boundary conditions, such as sim-

ly supported thin plates under uniform compression [20,21] or under

inearly distributed stress [22,23] . The method has also been success-

ully applied to the buckling analysis of stiffened panels under loading

onditions where buckling mainly occurs on the skin, such as compres-

ion [24] and eccentric compression along skin [25] . In these cases, the

quilibrium equations in the skin of the stiffened panels were used for

he buckling calculations and the effect from the stiffener on buckling

as considered by adding a special constraint, elastically built-in (an in-

ermediate boundary condition between simply supported and built-in

ondition), on the joint edge between the skin and stiffener [26] . For ex-

mple, Paik and Thayambali [27] analysed the skin buckling behaviour

f stiffened panels with multi-stiffener, where the section of the skin be-

ween two stiffeners was modelled as a thin plate with two elastically

uilt-in boundaries. Under many other loading conditions, such as bend-

ng, buckling of stiffened panels also occurs in the stiffener. However,

o report has been found to solve the buckling problem in the stiffener

f the stiffened panels using the equilibrium method. 

The energy method, on the other hand, solves the buckling prob-

ems in terms of the total potential energy which is the sum of the strain

nergy stored in the structure (depending on the deflection of struc-

ure) and the work done of the applied load (relating to critical buckling

trength). The buckling stress is obtained by minimising the total poten-

ial energy [28] . The method is much easier to be applied to buckling

alculations for structures with complicated geometric conditions, such

s stiffened panels, however, the deflection of the buckled structures

as to be assumed before the calculations, which raises some uncertain-

ies of the method [29] . Energy method has been applied to calculate the

uckling strength of stiffened panels in many studies [30] , however, dif-

erent flexible skin deflection assumptions have been used to consider

he interaction between skin and stiffener, such as one half-waves or

wo half-waves deflection assumptions [31,32] and deflections defined

y trigonometric functions [33,34] . The main limitation of the energy

ethod is that the deflections of the buckled structures are assumed

mpirically, which is hard to guarantee the accuracy of the calculated

esults. 

In this paper, a buckling analysis based on the equilibrium method is

eveloped for stiffened panels subjected to bending in the elastic region,

hich is simplified as a stiffener with rotational constraints from the

kin. The equilibrium equation of buckling in the equilibrium method is

olved by the Frobenius method to acquire the critical buckling strength

f stiffened panels under a bending moment. A new parameter, the ef-

ective width of stiffened panel, is introduced into the buckling analysis

o consider the effect of non-rigid rotation of the flexible skin. FE simu-

ations of some selected cases have been carried out to compare with the

orresponding analytical results and verify the accuracy of the proposed

nalytical solution. Furthermore, the effects of the main geometric pa-

ameters of stiffened panels on the critical buckling strength have been

nvestigated and discussed based on both the analytical and numerical

esults. 
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Fig. 1. Schematic diagram of a single blade stiffened panel subjected to bend- 

ing: (a) the geometric parameters and (b) the boundary conditions. 

Fig. 2. Schematic showing the x -directional stress distribution ( 𝜎x ) along the 

y -axis of a stiffened panel subjected to bending. 
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. Problem definition 

.1. Stiffened panels subjected to pure bending 

The buckling behaviour of stiffened panels with a single high blade

tiffener subjected to a bending moment is studied in this paper.

ig. 1 shows the geometric parameters and boundary conditions of the

tiffened panel subjected to pure bending, in which a coordinate system

as been defined. The main geometric parameters that affect the buck-

ing behaviour of the stiffened panels include the stiffened panel length

 , the stiffened panel width b , the skin thickness t sk , the stiffener height h

nd the stiffener thickness t st , as shown in Fig. 1 (a). The bending mo-

ent M z is applied on the two transverse edges of the stiffened panel

 x = 0, x = a ) during the loading process. The boundary conditions of the
ig. 3. Buckling mode of stiffened panels subjected to pure bending: (a) stiffener bu

c) the skin. 
ending stiffened panel are demonstrated in Fig. 1 (b). Two transverse

dges of the stiffened panel are defined as simply supported, while the

wo longitudinal edges are treated as free. Since the thicknesses of the

tiffened panels are relatively small compared with other dimensions

width and length), both the stiffener and the skin of the stiffened pan-

ls can be represented as thin plates. Therefore, these two structures are

ssumed to follow the Kirchhoff–Love plate theory in this study. 

.2. Stress distributions 

According to the Kirchhoff–Love plate theory, a linearly varying

tress is distributed along the y -direction of stiffened panels loaded by

he bending moment M z . Fig. 2 illustrates a sketch of the stress distribu-

ion in the bending stiffened panel. The in-plane stress of the stiffened

anel in the x -direction 𝜎x can be expressed as: 

𝑥 = − 𝜎0 

(
1 − 𝛼

𝑦 

ℎ 

)
= − 𝜎0 ( 1 − 𝛼𝜂) 

(
0 ≤ 𝜂 ≤ 

(
ℎ + 𝑡 𝑠𝑘 

)
∕ ℎ 

)
(1)

here 𝜂 = y / h is a normalised y -coordinate and the normalised x -

oordinates is also defined, as 𝜉 = x / a . 𝜎0 is the x -directional stress at

he top of the stiffener ( 𝜂 = 0), indicating the maximum compressive

tress in the bent stiffened panel. 𝛼 is a loading coefficient which de-

cribes the stress distribution and is determined by the stiffener height

nd the distance between the neutral plane and the top of the stiffened

anel y 0 : 

= 

ℎ 

𝑦 0 
(2) 

here 

 0 = 

∫ 𝑦𝑑𝐴 

∫ 𝑑𝐴 

= 

𝑡 𝑠𝑡 
ℎ 2 

2 + 𝑡 𝑠𝑘 𝑏 

(
ℎ + 

𝑡 𝑠𝑘 

2 

)
𝑡 𝑠𝑡 ℎ + 𝑡 𝑠𝑘 𝑏 

(3) 

When the stiffened panel is subjected to a bending moment, the load-

ng coefficient 𝛼 ranges from 1 to 2. 

Divide both numerator and denominator in Eq. (3) by h , Eq. (3) be-

omes: 

 0 = 

ℎ 

2 + 𝑏 
𝑡 𝑠𝑘 

𝑡 𝑠𝑡 

(
1 + 

𝑡 𝑠𝑘 

2 ℎ 

)
1 + 

𝑡 𝑠𝑘 

𝑡 𝑠𝑡 

𝑏 

ℎ 

(4) 

Since high stiffener conditions are considered in this study, the skin

hickness is much smaller than the stiffener height and then the item

 sk /2 h ≪ 1 in Eq. (4) . Therefore, there are three main parameters that

ffect y 0 according to Eq. (4) , including the stiffener height h , the stiff-

ned panel width b and the thickness ratio t / t . 
sk st 

ckling mode, and breakdown diagrams of the free body of (b) the stiffener and 
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Fig. 4. Simplified model for buckling analysis of stiffened panels loaded by 

bending moment. 
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.3. Buckling mode and buckling model 

There are three types of buckling modes for stiffened panels when

ubjected to different loading conditions, including Euler buckling

overall buckling), skin buckling and stiffener buckling. For the case

f stiffened panels loaded by pure bending investigated in this study

 Fig. 1 (b)), the top of the stiffener is in compression and the skin is

n tension, therefore, buckling would firstly occur in the stiffener sec-

ion and the primary buckling mode should be the stiffener buckling.

ig. 3 (a) demonstrates the general stiffener buckling mode, in which w

s the deflection of the stiffener in the z -direction, representing the oc-

urrence of buckling, and 𝜇 is the deflection of the skin in the y -direction

ue to the torsion applied by the stiffener. 

In order to facilitate the analytical solution of the complicated buck-

ing problem of stiffened panels, the stiffener and the skin sections of

he stiffened panel can be analysed individually, as illustrated in Fig.

 (b) and (c). The stiffener section is subjected to a distribution of lin-

arly varying stress of 𝜎x at the two transverse edges of x = 0 and x = a

 Fig. 2 ) and the constraints from the skin can be replaced by a bend-

ng moment M c at the connecting edge, as shown in Fig. 3 (b). The skin

ection is loaded by tension at two transverse edges ( Fig. 2 ) and a mo-

ent 𝑀 

′
𝑐 

along the connecting edge acts as a torsion moment to the

kin due to the buckling of the stiffener. The bending moment M c is the

eaction of the torsional moment 𝑀 

′
𝑐 

and their magnitude is equal. As

he stiffener section is the primary buckling area in the stiffened panels

nder bending investigated in this study, the buckling problem can be

implified to consider the stiffener section only. The effect from the skin

ection (the rotational constraint 𝑀 

′
𝑐 

in Fig. 3 (b)) can be represented

y an elastically built-in constraint in the connecting edge, as shown in

ig. 4 [16] . 

The simplified model of buckling of stiffened panels subjected to

ure bending then can be considered as a thin stiffener with two simply

upported loading edges ( x = 0, x = a ), one restrained connecting edge

 y = h ) and one free edge ( y = 0), as shown in Fig. 4 . The connecting edge

s equivalently constrained by an elastically built-in boundary condition

hich restricts the movement in the z -direction and the rotation in the

z -plane of the connecting edge by a torsional moment 𝑀 

′
𝑐 
. 

The skin rotational constraint of the elastically built-in boundary

ondition is determined by 𝑀 𝑐 + 𝑀 

′
𝑐 
= 0 along the connecting edge, as

llustrated in Fig. 3 . Based on Saint Venant’s torsion theory [35] , 𝑀 

′
𝑐 

can

e calculated analytically following the rigid skin assumption, where the

ross section of skin in the yz -plane remains straight after deformation,
s shown in Fig. 5 (a), in which 𝜃 is the rotation angle of the rigid skin

nd 𝜃′ is the rotation angle of the stiffener baseline after buckling. The

igid skin assumption is a correct approximation if the skin does not

istort [16] . However, in practical situations, the skin generally rotates

exibly with distortions, as shown in Fig. 5 (b). The analytical solutions

onsidering the practical flexible skin case cannot be performed directly

ince the deformation of flexible skin under torsion is too complicated

o be analytically modelled [36] . Hence, a compensation method for

he flexible skin case with the assistance from FE simulations has been

roposed in this study and will be introduced later. 

.4. Boundary conditions of buckling model 

𝑀 

′
𝑐 

is determined by the rotation angle of the skin 𝜃 and the torsional

tiffness of the skin based on the rigid skin assumption, while M c is

etermined by the deflection of the stiffener w and the flexural stiffness

f the stiffener D . According to the rotational continuity condition along

he skin-stiffener intersection [33] , the rotation angle of the skin 𝜃 is

qual to the rotation angle of the stiffener baseline 𝜃′ , which gives: 

= 𝜃′ = 

( 

𝜕𝑤 

𝜕𝑦 

) 

𝑦 = ℎ 
(5)

Base on Eq. (5) , 𝑀 

′
𝑐 

can be expressed by the deflection of stiffener w :

 

′
𝑐 
|𝑦 = ℎ = 

( 

𝐺 𝐽 𝑠𝑘 
𝜕 

𝜕𝑥 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 

) 

𝑦 = ℎ 
(6)

here GJ sk is the torsional stiffness of the skin, in which G is the shear

odulus of the material and J sk is the polar moment of inertia of the

kin in rigid skin assumption. G and J sk can be expressed as: 

 = 

𝐸 

2 ( 1 + 𝜐) 
(7)

 𝑠𝑘 = 

𝑏𝑡 3 
𝑠𝑘 

3 
(8)

here E and 𝜐 are respectively Young’s modulus and Poisson’s ratio of

he material. In the simplified model, the upper edge is free and the

onnecting edge is elastically built-in. The boundary conditions of the

implified buckling model of stiffened panels can be represented math-

matically as below: 

1) Free at the upper edge ( y = 0) 
• The vertical shearing force V up along the upper edge is free [20] ,

which gives: 

𝑉 𝑢𝑝 |𝑦 =0 = 𝐷 

( 

𝜕 3 𝑤 

𝜕 𝑦 3 
+ ( 2 − 𝜐) 𝜕 

3 𝑤 

𝜕 𝑥 2 𝜕𝑦 

) 

𝑦 =0 
= 0 (9)

• The moment M up along the upper edge is free [20] , which gives: 

𝑀 𝑢𝑝 |𝑦 =0 = 𝐷 

( 

𝜕 2 𝑤 

𝜕 𝑦 2 
+ 𝜐

𝜕 2 𝑤 

𝜕 𝑥 2 

) 

𝑦 =0 
= 0 (10)

here D is the flexural stiffness of the stiffener, as: 

 = 

𝐸𝑡 3 
𝑠𝑡 

12 
(
1 − 𝜐2 

) (11)

1) Elastically built-in at the connecting edge ( y = h ) 
Fig. 5. Buckling of stiffened panels with (a) rigid skin and (b) flexible 

skin conditions. 
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t  
• The deflection w along the connecting edge is zero: 

𝑤 |𝑦 = ℎ = 0 (12)

• The moment along the connecting edge is in an equilibrium condi-

tion: 

𝑀 𝑐 |𝑦 = ℎ + 𝑀 

′
𝑐 
|𝑦 = ℎ = 

( 

𝐷 

( 

𝜕 2 𝑤 

𝜕 𝑦 2 
+ 𝜐

𝜕 2 𝑤 

𝜕 𝑥 2 

) 

+ 𝐺 𝐽 𝑠𝑘 
𝜕 

𝜕𝑥 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 

) 

𝑦 = ℎ 
= 0 

(13) 

Replacing x and y by corresponding normalised coordinates 𝜉 and

, the boundary conditions in Eqs. (9) , (10) , (12) and (13) can be sum-

arised as: 

 

 

 

 

 

 

 

 

 

 

 

( 

1 
ℎ 3 

𝜕 3 𝑤 

𝜕 𝜂3 
+ ( 2 − 𝜐) 1 

𝑎 2 ℎ 

𝜕 3 𝑤 

𝜕 𝜉2 𝜕𝜂

) 

𝜂=0 
= 0 ( 

1 
ℎ 2 

𝜕 2 𝑤 

𝜕 𝜂2 
+ 𝜐

1 
𝑎 2 

𝜕 2 𝑤 

𝜕 𝜉2 

) 

𝜂=0 
= 0 

( 𝑤 ) 𝜂=1 = 0 ( 

𝐷 

( 

1 
ℎ 2 

𝜕 2 𝑤 

𝜕 𝜂2 
+ 𝜐

1 
𝑎 2 

𝜕 2 𝑤 

𝜕 𝜉2 

) 

+ 𝐺 𝐽 𝑠𝑘 
1 

𝑎 2 ℎ 

𝜕 

𝜕𝜉

𝜕 2 𝑤 

𝜕 𝜉𝜕 𝜂

) 

𝜂=1 
= 0 

(14) 

. Analytical method 

.1. Buckling analysis with rigid skin case 

In this section, the equilibrium method is used to solve the buckling

roblem of stiffened panels with the rigid skin case by the proposed sim-

lified model. The partial differential form of the equilibrium equation

or the model under a pure bending moment is given by [20] : 

𝜕 4 𝑤 

𝜕 𝑥 4 
+ 2 𝜕 

4 𝑤 

𝜕 𝑥 2 𝑦 2 
+ 

𝜕 4 𝑤 

𝜕 𝑦 4 
= 

𝜎𝑥 𝑡 𝑠𝑡 

𝐷 

𝜕 2 𝑤 

𝜕 𝑥 2 
(15)

Using the normalised coordinates, the partial differential equation

ecomes: 

ℎ 4 

𝑎 4 
𝜕 4 𝑤 

𝜕 𝜉4 
+ 2 ℎ 

2 

𝑎 2 
𝜕 4 𝑤 

𝜕 𝜉2 𝜂2 
+ 

𝜕 4 𝑤 

𝜕 𝜂4 
= 

ℎ 2 

𝑎 2 
𝜎𝑥 𝑡 𝑠𝑡 ℎ 

2 

𝐷 

𝜕 2 𝑤 

𝜕 𝜉2 
(16)

For thin plates with the simply supported boundary condition, the

ree edges of the buckled plates have been reported to generally show si-

usoidal half-waves patterns [28] , and hence the deflection w in the free

dge of stiffener along the x -direction can be modelled by the following

quation [20] : 

 = 𝑓 𝑚 ( 𝜂) sin ( 𝑚𝜋𝜉) (17)

here m is the number of sinusoidal half-waves in the x -direction, f m 

( 𝜂)

s a function of 𝜂 and m to describe the displacement in the z -direction,

hich satisfies the boundary conditions of the upper edge and the con-

ecting edge of the simplified model. 

Substituting 𝜎x in Eq. (1) and deflection w in Eq. (17) into Eq. (16) ,

t becomes an ordinary differential equation: 

 

𝑑 4 𝑓 𝑚 

𝑑 𝜂4 
− 2 𝜓 

2 𝑑 
2 𝑓 𝑚 

𝑑 𝜂2 
+ 𝜓 

4 𝑓 𝑚 

) 

= 𝜓 

2 𝜋2 𝜎0 𝑡 𝑠𝑡 ℎ 
2 

𝜋2 𝐷 

( 1 − 𝛼𝜂) 𝑓 𝑚 (18) 

here 𝜓 = m 𝜋h / a . To simplify Eq. (18) , the buckling coefficient k , which

s the non-dimensional form of buckling strength [20] , is used and

q. (18) becomes: 

𝑑 4 𝑓 𝑚 

𝑑 𝜂4 
− 2 𝜓 

2 𝑑 
2 𝑓 𝑚 

𝑑 𝜂2 
+ 

(
𝜓 

4 − 𝜓 

2 𝜋2 𝑘 ( 1 − 𝛼𝜂) 
)
𝑓 𝑚 = 0 (19)

here 

 = 

𝜎0 𝑡 𝑠𝑡 ℎ 
2 

𝜋2 𝐷 

(20)

Since the differential equation Eq. (19) is a transcendental equation,

t cannot be solved in a closed-form solution. Frobenius method is used
o solve the differential equation by expressing f m 

( 𝜂) in a power series

olution, as [22,23] : 

 𝑚 ( 𝜂) = 

∞∑
𝑛 =0 

𝐶 𝑚,𝑛 𝜂
𝑛 (21) 

here C m,n is a coefficient related to the number of half-waves m and

he number of power series n . The second and fourth derivatives of f m 

( 𝜂)

n Eq. (19) can be expressed as: 

 

′′
𝑚 ( 𝜂) = 

∞∑
𝑛 =0 

( 𝑛 + 2 ) !∕ 𝑛 ! 𝐶 𝑚,𝑛 +2 𝜂
𝑛 

𝑓 
( 4 ) 
𝑚 ( 𝜂) = 

∞∑
𝑛 =0 

( 𝑛 + 4 ) !∕ 𝑛 ! 𝐶 𝑚,𝑛 +4 𝜂
𝑛 

(22) 

Eq. (19) then can be updated as follows: 

∞

=1 

{ [ 
( 𝑛 + 4 ) ! 

𝑛 ! 
𝐶 𝑚,𝑛 +4 − 2 𝜓 

2 ( 𝑛 + 2 ) ! 
𝑛 ! 

𝐶 𝑚,𝑛 +2 + 𝜓 

2 (𝜓 

2 − 𝜋2 𝑘 
)
𝐶 𝑚,𝑛 

− 𝛼𝜓 

2 𝜋2 𝑘 𝐶 𝑚,𝑛 −1 

] 
𝜂𝑛 
} 

+ 

[
24 𝐶 𝑚, 4 − 4 𝜓 

2 𝐶 𝑚, 2 + 𝜓 

2 (𝜓 

2 − 𝜋2 𝑘 
)
𝐶 𝑚, 0 

]
𝜂0 = 0 

(23) 

As Eq. (23) is satisfied for all 𝜂 values, ranging from 0 to 1, the co-

fficients of 𝜂0 and 𝜂n ( n = 1, 2, 3, …) in Eq. (23) have to be zero, one

btains: 

4 𝐶 𝑚, 4 − 4 𝜓 

2 𝐶 𝑚, 2 + 𝜓 

2 (𝜓 

2 − 𝜋2 𝑘 
)
𝐶 𝑚, 0 = 0 (24)

 𝑛 + 4 ) !∕ 𝑛 ! 𝐶 𝑚,𝑛 +4 − 2 𝜓 

2 ( 𝑛 + 2 ) !∕ 𝑛 ! 𝐶 𝑚,𝑛 +2 + 𝜓 

2 (𝜓 

2 − 𝜋2 𝑘 
)
𝐶 𝑚,𝑛 

− 𝛼𝜓 

2 𝜋2 𝑘 𝐶 𝑚,𝑛 −1 = 0 ( 𝑛 ≥ 1 ) (25) 

C m ,4 then can be expressed by C m ,2 , C m ,0 and the buckling coefficient

 according to Eq. (24) : 

 𝑚, 4 = 

𝜓 

2 

24 
(
4 𝐶 𝑚, 2 − 

(
𝜓 

2 − 𝜋2 𝑘 
)
𝐶 𝑚, 0 

)
(26) 

The recursive equation of C m,n + 4 ( n = 1, 2, 3, …) can be given from

q. (25) : 

 𝑚,𝑛 +4 = 

𝑛 ! 𝜓 

2 (2 ( 𝑛 + 1 ) ( 𝑛 + 2 ) 𝐶 𝑚,𝑛 +2 − 

(
𝜓 

2 − 𝜋2 𝑘 
)
𝐶 𝑚,𝑛 − 𝛼𝜋2 𝑘 𝐶 𝑚,𝑛 −1 

)
( 𝑛 + 4 ) ! 

(27) 

Therefore, C m,n ( n ≥ 4) can be expressed in terms of the first four

oefficients C m ,0 , C m ,1 , C m ,2 , C m ,3 and k according to Eqs. (26) and

27) . The deflection of the stiffener w represented with four coefficients

 m ,0 , C m ,1 , C m ,2 , C m ,3 and k is then obtained by substituting Eqs. (21) ,

26) and (27) into Eq. (17) . 

The boundary condition is used to determine the buckling coeffi-

ient k . The boundary condition of the stiffened panel in Eq. (14) can

e simplified by substituting Eq. (17) , as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 

𝜕 3 𝑓 𝑚 

𝜕 𝜂3 
+ ( 2 − 𝜐) 𝜓 

2 𝜕 𝑓 𝑚 
𝜕𝜂

) 

𝜂=0 
= 0 

( 

𝜕 2 𝑓 𝑚 

𝜕 𝜂2 
+ 𝜐𝜓 

2 
) 

𝜂=0 
= 0 

(
𝑓 𝑚 

)
𝜂=1 = 0 ( 

𝜕 2 𝑓 𝑚 

𝜕 𝜂2 
+ 𝐶 𝑟 

𝜕 𝑓 𝑚 

𝜕𝜂

) 

𝜂=1 
= 0 

(28) 

here 

 𝑟 = 

𝐺 𝐽 𝑠𝑘 

𝐷 

𝑚 

2 𝜋2 ℎ 

𝑎 2 
= 2 𝑚 

2 𝜋2 ( 1 − 𝜐) 𝑏ℎ 
𝑎 2 

𝑡 3 
𝑠𝑘 

𝑡 3 
𝑠𝑡 

(29)

C r is the rotational constraint coefficient of the skin which is related

o the width and length of the stiffened panel, the stiffener height and
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Fig. 6. FE model for the skin subjected to the torsion along the centreline. 

Fig. 7. Deflection of skin in the y-direction ( 𝜇) for different skin widths sub- 

jected to the same torsion (solid lines are FE simulation results with flexible 

skins and dashed lines are analytical results with rigid skins). 
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h  
he thickness ratio. C r varies from 0 (free rotation) to ∞ (fixed rota-

ion) in the elastically built-in condition [27] . Substitute Eq. (21) into

he boundary condition of Eq. (28) , the four boundary functions can be

xpressed by C m,n : 

 

 

 

 

 

 

 

 

 

2 𝐶 𝑚, 2 + 𝜐𝜓 

2 𝐶 𝑚, 0 = 0 
6 𝐶 𝑚, 3 + ( 2 − 𝜐) 𝜓 

2 𝐶 𝑚, 1 = 0 
∞∑
𝑛 =1 

𝐶 𝑚,𝑛 = 0 
∞∑
𝑛 =1 

𝑛 ( 𝑛 − 1 ) 𝐶 𝑚,𝑛 + 𝐶 𝑟 

∞∑
𝑛 =1 

𝑛 𝐶 𝑚,𝑛 = 0 

(30)

Eq. (30) can be represented by a set of linear homogeneous equations

sing C m ,0 , C m ,1 , C m ,2 , C m ,3 , as: 

 

 

 

 

 

 

𝐴 11 𝐴 12 𝐴 13 𝐴 14 
𝐴 21 𝐴 22 𝐴 23 𝐴 24 
𝐴 31 𝐴 32 𝐴 33 𝐴 34 
𝐴 41 𝐴 42 𝐴 43 𝐴 44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝐶 𝑚, 0 
𝐶 𝑚, 1 
𝐶 𝑚, 2 
𝐶 𝑚, 3 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 0 (31)

here A ij ( 𝑖 = 1 ∼ 4 , 𝑗 = 1 ∼ 4) are the coefficients of the linear homoge-

eous equations, in which A 11 = 𝜈𝜓 

2 , A 13 = 2, A 22 = (2 − 𝜈) 𝜓 

2 , A 24 = 6,

 12 = A 14 = A 21 = A 23 = 0 and other A ij ( 𝑖 = 3 , 4 , 𝑗 = 1 ∼ 4) are related to

 and can be obtained by substituting Eqs. (26) and (27) into Eq. (30) .

he buckling condition is satisfied when the determinant of the matrix

f the coefficients vanishes, with which the k value can be directly cal-

ulated. 

𝐴 11 𝐴 12 𝐴 13 𝐴 14 
𝐴 21 𝐴 22 𝐴 23 𝐴 24 
𝐴 31 𝐴 32 𝐴 33 𝐴 34 
𝐴 41 𝐴 42 𝐴 43 𝐴 44 

|||||||||
= 0 (32)

The exact deflection of the stiffener Eqs. (17) and ( (21) ) can be cap-

ured with infinite series ( n →∞), with which an exact solution of k will

e obtained. However, it is unrealistic to use infinite series for the so-

ution. A convergence analysis has been performed, which shows that

he obtained k values could maintain five significant figures with n = 32.

his accuracy is high enough for the current study and all the following

esults were approximately calculated with n = 32. A set of solutions can

e calculated for each number of half-waves m , and k is obtained as the

inimum positive value of all eigenvalues. Then the lowest value of k

s the critical buckling coefficient k cr of the stiffened panel and the cor-

esponding m value indicates its buckling mode in the free upper edge. 

After obtaining k cr , the critical buckling strength of the stiffened

anel under bending can be calculated by [37] : 

𝑐𝑟 = 

𝑘 𝑐𝑟 𝜋
2 𝐸 

12 
(
1 − 𝜐2 

)( 

𝑡 𝑠𝑡 

ℎ 

) 2 
(33)

.2. Buckling analysis with flexible skin case 

This section proposed a new method to first-time consider the effect

f flexible skins with non-rigid rotation behaviour on buckling analysis

f stiffened panels by combining analytical methods with some basic FE

imulations. 

The rotation of skin is caused by the non-uniform torsional moment

 𝑀 

′
𝑐 
) along the connecting edge due to the buckling of the stiffener.

he torsional moment is equal to the bending moment on the connect-

ng edge of the stiffener ( M c ), which is a sinusoid function according to

qs. (13) and (17) . As indicated in Section 3.1 , 𝑀 

′
𝑐 

cannot be obtained

nalytically for the flexible skin case, FE simulations have been used

n this study to investigate the detailed non-rigid rotation behaviour of

he flexible skin subjected to a torsional moment with a sinusoid func-

ion along the connecting edge. A quarter of the unit skin model with

ne half-wave region is selected for FE simulations and the correspond-

ng boundary conditions of the model are shown in Fig. 6 . The length
nd width of the model are respectively a /2 m and b /2, and a torsional

oment 𝑀 

′
𝑐 
∕2 is considered in the analysis: 

𝑀 

′
𝑐 

2 
= 

𝑀 

′
𝑐0 
2 

sin 
(
𝜋𝑥𝑚 

𝑎 

)
(34)

here 𝑀 

′
𝑐0 is the torsion moment at the joint between the connecting

dge and the symmetry line in the whole skin. FE simulations for the

odels with various width conditions were performed. The geometric

izes of the models include: a length of 50 mm, a thickness of 1 mm and

 varying width ranging from 25 mm to 150 mm. As the deformation of

he skin subjected to a torsion moment is proportional to the magnitude

f the torsion in the elastic region, the value of the torsion moment will

ot affect the trend of the skin deformation. Hence, 𝑀 

′
𝑐0 is set as 20

N m)/m in these FE models for demonstration in this study. 

The deflections of the skin at the symmetric line with different skin

idth conditions from the FE simulation results are shown in Fig. 7 and

wo analytical results with the rigid skin assumptions are also plotted

or comparison. It can be seen that when the width is small, the rotation

ehaviour of the skin agrees well with the analytical result following

he rigid skin assumption, indicating that the rigid skin assumption is

atisfied for the skin with a small width. While with the increasing skin

idth, the cross-section of the skin becomes deformable and distorts

eavily, which shows apparent differences with the analytical results,
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Fig. 8. Schematic diagram of effective width for flexible skin cases. 

Fig. 9. Evolution of effective width to length ratio mb eff/ a versus mb / a of stiff- 

ened panels. 
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Table 1 

Geometry of the FE models (unit: mm). 

Set 1 Set 2 Set 3 Set 4 

a b a b a b a b 

50.0 12.5 100 50.0 800 100 532 200 

50.0 37.5 100 100 160 100 229 200 

50.0 62.5 100 150 90.0 100 146 200 

50.0 87.5 100 200 60.0 100 107 200 

50.0 112.5 100 250 47.0 100 84.2 200 

50.0 137.5 100 300 38.0 100 69.6 200 
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nd the rigid skin assumption is not appropriate for these cases. In addi-

ion, with the increasing skin width, the deformed skins tend to converge

o the same shape. This phenomenon can be explained as that the tor-

ion is only applied on the connecting edge of the skin, and its influence

egion on the flexible skin is thus limited. 

𝑀 

′
𝑐 

on the connecting edge of skin is only determined by the rota-

ion angle of skin 𝜃′ and the torsional stiffness, as indicated in Eq. (6) .

s shown in Fig. 7 , when the skin width is large, the rotation angle be-

ween the stiffener and skin in the flexible case 𝜃f is larger than that in

he corresponding rigid skin case 𝜃r . The larger 𝜃f in the flexible skin

ase indicates a smaller torsional stiffness than that with the rigid skin

ssumption and hence, the analytical solution for rigid skin cases over-

redicts the torsional stiffness of skins, leading to inevitable errors of

he analytical solution. 
In order to overcome this problem, this paper introduces a new con-

ept of effective width, b eff, in the buckling analysis to amend the tor-

ional stiffness according to flexible skin conditions. b eff is defined as

he width of an equivalent rigid skin which performs the same torsional

tiffness with the flexible skin case having an actual width of b , in which

he rotation angle of both skins are the same when they are subjected

o the same torsion, as shown in Fig. 8 . b eff can be expressed according

o the torsional stiffness of the flexible skin 𝐺𝐽 ′
𝑠𝑘 

, as: 

 𝑒𝑓𝑓 = 

3 𝐺𝐽 ′
𝑠𝑘 

𝐺𝑡 3 
𝑠𝑘 

= 

𝐽 ′
𝑠𝑘 
𝑏 

𝐽 𝑠𝑘 
(35) 

The torsional stiffness of the flexible skin is calculated by torsion

ivided by the rotation angle per unit length according to Eq. (6) , as: 

𝐽 ′
𝑠𝑘 

= 

𝑀 

′
𝑐 

𝜕 2 𝜃𝑓 
𝜕 𝑥 2 

(36) 

To obtain the torsional stiffness of the flexible skin from FE simu-

ation results, Eq. (36) is re-written based on the second-order forward

ifference as: 

𝐽 ′
𝑠𝑘 

≈
𝑀 

′
𝑐0 Δ𝑥 2 (

𝜃𝑓 
)
𝑥 =0 − 2 

(
𝜃𝑓 

)
𝑥 =Δ𝑥 

+ 

(
𝜃𝑓 

)
𝑥 =2Δ𝑥 

(37) 

here Δx is the spatial increment of neighbouring nodes. When Δx tends

o 0, b eff achieves an exact value. According to the convergence test on

x with the criterion of 1% error, Δx is set to a /20 m . 

Substituted Eq. (37) into Eq. (35) , the effective width b eff can be

alculated, when the rotation angles ( 𝜃f ) x = 0 , ( 𝜃f ) x = Δx and ( 𝜃f ) x = 2 Δx are

btained from the FE simulations: 

 𝑒𝑓𝑓 ≈
𝑀 

′
𝑐0 Δ𝑥 2 (

𝜃𝑓 
)
𝑥 =0 − 2 

(
𝜃𝑓 

)
𝑥 =Δ𝑥 

+ 

(
𝜃𝑓 

)
𝑥 =2Δ𝑥 

𝑏 

𝐺 𝐽 𝑠𝑘 
(38) 

To investigate the effective width b eff with different skin aspect ratios

b / a , four sets of FE simulations of skins with different dimensions were

arried out, as listed in Table 1 . The length of the skin is constant with

arying skin widths in Sets 1 and 2, while in Sets 3 and 4 the skin width

s constant with different skin lengths. 
Fig. 10. FE model of a single blade stiffened panel subjected to bend- 

ing. 
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Table 2 

Geometry and FE results of critical buckling moment and coefficient for test cases. 

a (mm) b (mm) h (mm) t sk (mm) t st (mm) t sk / t st 𝛼 k M cr (Nm) 

Group 1 (25 mm ≤ a ≤ 200 mm) 

25.0 50.0 25.0 1.00 1.00 1.00 1.18 2.01 42.7 

37.5 50.0 25.0 1.00 1.00 1.00 1.18 1.43 30.4 

50.0 50.0 25.0 1.00 1.00 1.00 1.18 1.32 28.0 

75.0 50.0 25.0 1.00 1.00 1.00 1.18 1.42 30.2 

100 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6 

125 50.0 25.0 1.00 1.00 1.00 1.18 1.37 29.0 

150 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6 

175 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6 

200 50.0 25.0 1.00 1.00 1.00 1.18 1.35 28.6 

Group 2 (12.5 mm ≤ h ≤ 100 mm) 

100 50.0 12.5 1.00 1.00 1.00 1.07 1.33 31.0 

100 50.0 14.3 1.00 1.00 1.00 1.09 1.35 30.8 

100 50.0 16.7 1.00 1.00 1.00 1.11 1.34 29.9 

100 50.0 20.0 1.00 1.00 1.00 1.14 1.30 28.4 

100 50.0 25.0 1.00 1.00 1.00 1.18 1.28 27.3 

100 50.0 33.3 1.00 1.00 1.00 1.24 1.26 25.7 

100 50.0 50.0 1.00 1.00 1.00 1.32 1.24 24.0 

100 50.0 66.6 1.00 1.00 1.00 1.39 1.49 27.4 

100 50.0 100 1.00 1.00 1.00 1.50 2.23 38.3 

Group 3 (50 mm ≤ b ≤ 200 mm) 

100 25.0 25.0 1.00 1.00 1.00 1.32 1.20 23.6 

100 50.0 25.0 1.00 1.00 1.00 1.18 1.34 28.6 

100 75.0 25.0 1.00 1.00 1.00 1.12 1.34 29.4 

100 100 25.0 1.00 1.00 1.00 1.09 1.33 29.7 

100 125 25.0 1.00 1.00 1.00 1.07 1.32 29.8 

100 150 25.0 1.00 1.00 1.00 1.06 1.31 29.9 

100 175 25.0 1.00 1.00 1.00 1.05 1.31 29.8 

100 200 25.0 1.00 1.00 1.00 1.04 1.30 30.0 

Group 4 (0.25 ≤ t sk / t st ≤ 1) 

50.0 50.0 25.0 0.25 1.00 0.25 1.50 1.02 17.5 

50.0 50.0 25.0 0.50 1.00 0.50 1.32 1.07 20.5 

50.0 50.0 25.0 0.75 1.00 0.75 1.24 1.19 24.2 

50.0 50.0 25.0 1.00 1.00 1.00 1.18 1.32 28.0 
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The results of the effective width are obtained from the FE modelling

esults and Eq. (38) , and the variation of the effective width to length

atio mb eff/ a versus mb / a is shown in Fig. 9 . As the results from four

ets of models with different geometric parameters of stiffened panels

ll show the same trend, as shown in Fig. 9 , the relationship between

b eff/ a and mb / a seems to be independent on the geometric properties

f the skin models. mb eff/ a increases with a nearly proportional trend

ith mb / a initially, the increasing speed decreases afterwards with fur-

her increasing mb / a values until reaching a saturated level. It is found

hat this relationship can be perfectly fitted by a hyperbolic tangent

quation. For the data shown in Fig. 9 , the fitted equation is: 

 𝑒𝑓𝑓 = 0 . 9557 tanh 
(1 . 072 𝑚𝑏 

𝑎 

)
𝑎 

𝑚 

(39)

By replacing the width b in Eq. (30) with b eff, the non-rigid rotation

ffect of the flexible skin can be considered for the analytical solution

f the buckling analysis. The results and accuracy of the original and

pdated analytical solutions for stiffened panels with various geometric

onditions will be demonstrated and discussed in the following sections.

. Finite element method 

To verify the effectiveness of the analytical solution and the new ef-

ective width concept for buckling of stiffened panels introduced in this

tudy, FE simulations were carried out with the commercial software

BAQUS to obtain the critical buckling strength 𝜎cr and the buckling

ode of stiffened panels. The buckling coefficient k can be calculated

rom the obtained 𝜎cr by Eq. (33) . The FE model for the stiffened panel is

hown in Fig. 10 . The model was constrained to a simply supported con-

ition: the two transverse edges of the skin were fixed in the y -direction

nd the two longitudinal edges were free; the middle line of the skin
as fixed in the x -direction and the two transverse edges of stiffener

ere fixed in the z -direction. The linearly varying stress 𝜎x represent-

ng the bending moment ( Eq. (1) ) was applied on the two transverse

dges of the stiffened panel model. The material was defined as an alu-

inium alloy with E = 73.8 GPa and 𝜐 = 0 . 33 [38] . It is documented that

he S4R element in ABAQUS can provide accurate solutions for large-

cale buckling analysis efficiently [39] , and the feasibility and accuracy

f the element in solving buckling problems of stiffened panels have

een validated in many previous studies [33,40] . Hence, the stiffened

anel was modelled with S4R elements in this study. The mesh size con-

ergence analysis was performed and a proper number of elements of

he model is selected as 1800, with a mesh of 24 × 50 elements in the

kin, and 12 × 50 elements in the stiffener. In ABAQUS, the buckling

ehaviour is analysed by solving the following equilibrium equations

41] : 

[ 𝑘 ] − 𝜆[ 𝑘 ] 𝐺 
]
{ 𝛿} = { 0 } (40)

here 𝜆 is the buckling load eigenvalue, [ k ] and [ k ] G are stiffness ma-

rices and geometric stiffness matrices and { 𝛿} is the eigenvector. 

. Results and discussion 

FE simulations of four groups of stiffened panels with arbitrarily se-

ected different geometric conditions were carried out for comparison

nd verification. The buckling coefficients k of stiffened panels subjected

o bending with different geometric parameters were calculated using

he proposed analytical solutions. The critical buckling moment M cr ,

hich is the maximum moment that the stiffened panel can bear with-

ut buckling, has also been calculated. Table 2 lists the FE results for the

ritical buckling moment and coefficient for all the test cases. The effects
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Fig. 11. Buckling mode shapes of a selected stiffened panel 

( a = 100 mm, b = 50 mm, h = 50 mm, t sk = 1 mm, t st = 1 mm) for (a) 

m = 1, (b) m = 2, (c) m = 3 and (d) m = 4. 
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f the four main geometric parameters (stiffened panel length a , stiff-

ned panel width b , stiffener height h and thickness ratio t sk / t st ) on the

uckling strength of stiffened panels are reported and discussed in the

ollowing sections. Although these parameters are arbitrarily selected,

hey serve to verify the effectiveness of the proposed analytical method.

he method can be applied for solving buckling problems of stiffened

anels with different geometric parameters. 

To visually show the buckling mode shapes of stiffened panels inves-

igated in this study, the FE results of some buckling mode shapes ( 𝑚 =
 ∼ 4 ) of a selected stiffened panel ( a = 100 mm, b = 50 mm, h = 50 mm,

 sk = 1 mm, t st = 1 mm) are displayed in Fig. 11 . The buckling mode

hape in Fig. 11 (b) ( m = 2) is the critical buckling mode since the corre-

ponding buckling coefficient k is the minimum for the selected stiffened

anel. 
.1. Effect of stiffened panel length 

Buckling analysis of the stiffened panels with various lengths a listed

n Table 2 (Group 1) has been performed numerically and analytically

ith rigid skin and flexible skin assumptions. The obtained k values with

ifferent lengths a are shown in Fig. 12 . A fair agreement with a slight

ifference between analytical results with the rigid skin assumption ( b )

nd FE results can be observed in Fig. 12 (a). The use of effective stiff-

ned panel width in analytical solution with the flexible skin assump-

ion ( b eff) predicts a slight lower k value compared with the rigid skin

ases in Fig. 12 (a) and achieves an excellent agreement with FE results,

s shown in Fig. 12 (b). Meanwhile, the critical lengths, at which abrupt

hanges of the buckling mode exist, become slightly larger with the flex-

ble skin assumption than that with the rigid assumption. The buckling
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Fig. 12. Buckling coefficient k and buckling mode (half-waves m ) versus stiff- 

ened panel length a with (a) stiffened panel width in rigid skin assumption and 

(b) effective stiffened panel width in flexible skin assumption (symbols – FE, 

lines – analytical results (Ana.)). 

Table 3 

Original width b and effective width b eff of 

stiffened panels with different numbers of half- 

waves m in buckling mode. 

m = 1 m = 2 m = 3 m = 4 

b (mm) 50.0 50.0 50.0 50.0 

b eff (mm) 45.9 37.4 28.6 22.9 
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Fig. 13. Buckling coefficient k and buckling mode (half-waves m ) versus recip- 

rocal of stiffener height h − 1 with (a) stiffened panel width b in rigid skin as- 

sumption and (b) effective stiffened panel width b eff in flexible skin assumption 

(symbols – FE, lines – analytical results (Ana.)). 
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oefficient k is relatively large with small a values and decreases signif-

cantly as a increases. After the buckling coefficient k reaches the mini-

um value, it begins to increase slightly. The stiffened panel is buckled

ith a one half-wave pattern ( m = 1) at this stage. The buckling mode

f the stiffened panels increases from one half-wave to more half-waves

s a increases. Although there is a reducing-increasing cycle for each

uckling mode afterwards, it can be seen that the buckling coefficient k

emains relatively stable when m > 1. 

.2. Effect of stiffener height 

According to the equilibrium equation ( Eq. (16) ), the reciprocal

f the stiffener height h − 1 is relevant to k and their relationship from

he tested cases in Table 2 (Group 2) is shown in Fig. 13 . The corre-

ponding effective stiffened panel width b eff with different numbers of

alf-waves m for stiffened panels in Group 2 is calculated according to

q. (39) and the results are shown in Table 3 . 

Fig. 13 shows the effect of stiffener height on the buckling coeffi-

ient, with b in rigid skin assumption in Fig. 13 (a) and b eff in flexible skin

ssumption in Fig. 13 (b) respectively. The differences of buckling coef-
cient between the analytical results with the actual width and corre-

ponding FE results increases when the reciprocal of the stiffener height

ncreases, due to the increasing difference between b eff and b with in-

reasing m , as listed in Table 3 . An apparent improvement in buckling

oefficient prediction has been achieved when b eff in flexible skin as-

umption was used, which shows an excellent agreement with corre-

ponding FE results. 

The effect of h − 1 on the buckling coefficient k is similar to that of the

tiffened panel length a . The buckling coefficient decreases abruptly first

nd then increases slightly as h − 1 increases when the buckling mode is of

ne half-wave ( m = 1) pattern, and a repeated slight reducing-increasing

ycle of buckling coefficient exists for subsequent buckling modes. In the

ater stage, the buckling coefficient increases as the skin rotation con-

traints coefficient C r increases. According to Eq. (29) , C r is positively

elated to the variables of m 

2 , b eff and h . When h − 1 increases, though

 eff and h decrease, C r still increases first at each buckling mode due to

he increase of m . 

.3. Effect of stiffened panel width 

In this section, the effect of stiffened panel width on buckling be-

aviour of stiffened panels is discussed according to the test cases in

able 2 (Group 3). The analytical results of the buckling coefficient k

alculated with b in rigid skin assumption and b eff in flexible skin as-

umption versus the stiffened panel width b are respectively compared

ith corresponding FE results in Fig. 14 (a) and (b). A larger difference

etween the analytical results with b in rigid skin assumption and FE

esults can be observed when the stiffened panel width increases, while

he accuracy of analytical results is significantly improved with b eff in

exible skin assumption. The high accuracy of analytical solution with
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Fig. 14. Buckling coefficient k and buckling mode (half-waves m ) versus panel 

width b with (a) stiffened panel width b in rigid skin assumption and (b) effec- 

tive stiffened panel width b eff in flexible skin assumption (symbols – FE, lines –

analytical results (Ana.)). 
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Fig. 15. Buckling coefficient k and buckling mode (half-waves m ) versus thick- 

ness ratio t sk / t st with (a) stiffened panel width b in rigid skin assumption and 

(b) effective stiffened panel width b eff in flexible skin assumption (symbols – FE, 

lines – analytical results (Ana.)). 
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 eff is verified by the numerical results. The buckling coefficient k in-

reases with a small stiffened panel width, and then becomes stable

ith a slightly dropping trend as the stiffened panel width increases.

he buckling mode of the stiffened panel changes from one half-wave

ode ( m = 1) to two half-waves mode ( m = 2), when k reaches the stable

evel. 

According to Eqs. (19) , (30) and (39) , there are three factors related

o the stiffened panel width that affect k , namely, skin rotational con-

traint ( C r ), flexible skin effect ( b eff) and loading coefficient ( 𝛼). C r in-

reases when the stiffened panel width increases, leading to the initial

ncrease of k in Fig. 14 . Since the flexible skins tend to deform to the

ame shape with increasing stiffened panel width, as shown in Fig. 7 , the

ffective width b eff remains relatively stable with high stiffened panel

idth conditions, and thus, a comparatively stable value of k can be ob-

erved in Fig. 14 . In addition, the loading coefficient 𝛼 declines when

he stiffened panel width b increases, which contributes to the slight

ecrease of the buckling coefficient k with further increasing stiffened

anel width. 

.4. Effect of thickness ratio 

The effect of the thickness ratio t sk / t st on the buckling coefficient k

s discussed with geometric parameters given in Table 2 (Group 4). The

esults of k calculated by b and b eff versus t sk / t st are shown in Fig. 15 (a)

nd (b). The analytical results with b show a good agreement with FE

esults at low t sk / t st values, however, the difference between them in-

reases with increasing t sk / t st values. Meanwhile, results with b eff show

n excellent agreement at all t sk / t st values investigated in this study,

emonstrating the prediction accuracy of the proposed analytical solu-

ion using b eff. Increasing thickness ratio leads to the increase of the
kin rotational constraint according to Eq. (30) , and thus, resulting in a

arger buckling coefficient, as shown in Fig. 15 . 

According to the parametric study in this section, the effects of a

nd h − 1 on the buckling coefficient of stiffened panels are similar. Espe-

ially, the effects are significant when a / h is small. b has a small effect

n the buckling coefficient when it is relatively large due to the twist

f flexible skin, while the increase of t sk / t st will increase buckling co-

fficient. As demonstrated in the comparison with FE simulations, the

roposed analytical solution with the new parameter, effective width,

chieves a very high accuracy to calculate the buckling strength of the

tiffened panels under bending. 

Although the analytical method for buckling analysis is developed

ased on stiffened panels with one blade stiffener in this study, it can be

xtended for stiffened panels with other types of single stiffener (such

s T-, Z-, J- shapes) or multiple stiffeners, by modifying the boundary

onditions of the simplified model according to particular cases. For

xample, the buckling problem of stiffened panels with a T-shape stiff-

ner can be directly calculated by replacing the free boundary condition

or the top of the simplified model in this study to an elastically built-

n boundary condition. To consider the buckling analysis of stiffened

anels with multiple stiffeners, the boundary condition at the longitu-

inal edge of the stiffened panels can be modified from free to sym-

etric boundary condition (rotation angle equal zero) or antisymmet-

ic boundary condition (transverse displacement equal zero), and the

ffective width with the new boundary conditions, which is obtained

y the FE assisted method, can be employed in the analytical solution.

he analytical method proposed in this study can be used to guide the

esign of stiffened panels and applied to investigate the limit curva-

ure radius and/or the optimal geometric parameters of stiffened panels

ubjected to a bending moment during forming processes to avoid pos-

ible buckling. 
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. Conclusions 

An analytical solution for the elastic buckling analysis of stiffened

anels subjected to pure bending has been developed in this study,

hose effectiveness has been verified by corresponding FE simulations

f some selected cases. Based on the developed analytical solution, the

ffect of the main geometric parameters of stiffened panels on their

uckling strengths has been discussed. The following conclusions can

e drawn: 

1 The buckling problem of a stiffened panel subjected to bending can

be simplified as a stiffener with a special elastically built-in bound-

ary condition to consider the effect of skin-stiffener interaction. The

analytical solution proposed for this simplified model can effectively

calculate the critical buckling strength of stiffened panels. 

2 A new concept of effective width ( b eff) is proposed for buckling anal-

ysis of stiffened panels to account for the flexible skin conditions in

real cases, and a particular relationship between mb eff/ a and mb / a ,

which is independent on the geometric properties of stiffened pan-

els, has been quantitatively obtained through an FE assisted method.

It significantly improves the accuracy for buckling strength predic-

tion and reduces the maximum difference between analytical results

and simulation results from 12.2% with the conventional rigid skin

assumption to only 3.9%. 

3 The buckling coefficient k of stiffened panels decreases abruptly with

increasing length a at first, and stays at a relatively stable level with

further increase of the length when the buckling mode of stiffened

panels changes from one half-wave ( m = 1) to higher order half-

waves. The reciprocal of the stiffener height h − 1 shows a similar ef-

fect on k . 

4 With increasing stiffened panel width b , the buckling coefficient ini-

tially increases and then becomes stable with an insignificant de-

crease. Meanwhile, the increasing thickness ratio t sk / t st leads to the

increase of the skin rotational constraint, resulting in a larger buck-

ling coefficient. 
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